[صفحه اصلی ]   [Archive]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
پست الکترونیک::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 24، شماره 4 - ( 1404 ) ::
جلد 24 شماره 4 صفحات 951-913 برگشت به فهرست نسخه ها
Research Article: Smart tools and artificial intelligence for enhanced quality and safety in agriculture, fisheries, and aquaculture: A review
چکیده:   (485 مشاهده)
This study investigates the transformative potential of smart tools and artificial intelligence (AI) in enhancing quality assurance and safety within the agriculture, fisheries, and aquaculture sectors. A structured analytical framework is used to evaluate key AI algorithms—Naive Bayes, Support Vector Machines (SVM), Deep Learning, Machine Learning (ML), Artificial Neural Networks (ANNs), Fuzzy Logic, and Random Forests—emphasizing their mathematical foundations and practical integration into intelligent systems. The convergence of AI with advanced technologies such as computer vision (CV), the Internet of Things (IoT), and sensor-based monitoring is identified as a catalyst for real-time decision-making, robust quality control, and improved operational efficiency across the food supply chain. In agriculture, AI-powered tools enable precision farming, early pest and disease detection, and data-driven crop health monitoring. In fisheries and aquaculture, intelligent systems support automated feeding, disease prediction, and sustainable resource utilization. This study applies a structured literature-based analysis combined with performance benchmarking from empirical studies, showcasing validated use cases and quantitative accuracy metrics across various AI applications. The integration of AI technologies significantly improves traceability, reduces post-harvest losses, and enhances food safety in complex supply networks. Reported outcomes indicate high performance, with accuracy rates exceeding 80% in areas such as pathogen prediction, food recognition, microplastic detection, aquaculture optimization, and species classification. Specific applications show notable precision in microalgae classification (97.67–97.86%), seaweed identification (93.5%), and fish freshness assessment (up to 100%). Despite these advancements, the study acknowledges ongoing challenges related to data standardization, infrastructure, and regulatory frameworks. The findings highlight the need for interdisciplinary collaboration and continuous innovation. Ultimately, the strategic adoption of AI and smart tools is essential for building resilient, secure, and sustainable food systems and also offers significant indicators for future research.
متن کامل [PDF 824 kb]   (362 دریافت)    
نوع مطالعه: گزارش مورد | موضوع مقاله: Fish processing
انتشار الکترونیک: 1404/4/30
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kilinc I, Kilinc B, Takma C, Gevrekci Y. Research Article: Smart tools and artificial intelligence for enhanced quality and safety in agriculture, fisheries, and aquaculture: A review. IJFS 2025; 24 (4) :913-951
URL: http://jifro.ir/article-1-6092-fa.html

Research Article: Smart tools and artificial intelligence for enhanced quality and safety in agriculture, fisheries, and aquaculture: A review. مجله علوم شیلاتی ایران. 1404; 24 (4) :913-951

URL: http://jifro.ir/article-1-6092-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 24، شماره 4 - ( 1404 ) برگشت به فهرست نسخه ها
Iranian Journal of Fisheries Sciences Iranian Journal of Fisheries Sciences
Persian site map - English site map - Created in 0.03 seconds with 35 queries by YEKTAWEB 4714