[صفحه اصلی ]   [Archive]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
پست الکترونیک::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 24، شماره 2 - ( 1403 ) ::
جلد 24 شماره 2 صفحات 304-277 برگشت به فهرست نسخه ها
Research Article: Artificial intelligence models for identifying several fish species based on otolith morphology index analysis from nearshore areas of Vietnam
چکیده:   (466 مشاهده)
Fish species can be identified based on the analysis of morphological indices including basic dimension parameters and shape index. Several pattern recognition methods have been proposed to classify fish species through the morphological characteristics of otolith outlines. Machine learning methods have been applied in various fields, particularly in the differentiation of object shapes. Applying machine learning models to identify species based on basic dimension parameters and shape index of otoliths is highly promising. The purpose of this study is to apply machine learning models to classify marine fish species, aiming to determine which machine learning model and indices are suitable for otolith shape classification. A total of 720 samples of left otoliths (sagittae) from 12 fish species, with 60 individuals per species, were used to develop and evaluate the identification model using Python language. For the first time, a comparative evaluation of six machine learning models and three deep learning models was conducted to distinguish 12 fish species in the nearshore areas of northern and central Vietnam. The results of this study have identified machine learning and deep learning models based on high-performing basic dimension parameter (BDP) and/or shape index ShI indices for species identification. This lays the groundwork for developing software for automatic species or population identification based on otolith morphological analysis.
متن کامل [PDF 1540 kb]   (420 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Ecology
انتشار الکترونیک: 1403/12/27
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vu Q, Pham T, Nguyen V. Research Article: Artificial intelligence models for identifying several fish species based on otolith morphology index analysis from nearshore areas of Vietnam. IJFS 2025; 24 (2) :277-304
URL: http://jifro.ir/article-1-5722-fa.html

Research Article: Artificial intelligence models for identifying several fish species based on otolith morphology index analysis from nearshore areas of Vietnam. مجله علوم شیلاتی ایران. 1403; 24 (2) :277-304

URL: http://jifro.ir/article-1-5722-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 24، شماره 2 - ( 1403 ) برگشت به فهرست نسخه ها
Iranian Journal of Fisheries Sciences Iranian Journal of Fisheries Sciences
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4712