Research Article

Electrochemical harvesting of the marine microalgae, Nannochloropsis oculata: Effect on approximate composition, fatty acid profile, and metals biosorption

Shamsaie Mehrgan M.1; Hosseini Shekarabi S.P.1*

Received: February 2021 Accepted: December 2021

Abstract
The effect of electrochemical harvesting of Nannochloropsis oculata by aluminum (Al), iron (Fe), and graphite electrodes on the approximate composition, fatty acids profile, harvesting efficiency, and metals biosorption was investigated. Based on the results, the highest content of crude protein was observed in the control and graphite electrode groups, while the lowest value was measured in Al electrode (p<0.05). The highest content of fat (21.95 % in dry weight) was obtained in the microalgae harvested by Al electrode compared to other treatments (p<0.05). Maximum level of saturated fatty acids was observed in the microalgae harvested by Al electrode (89.68 % of total fat) (p<0.05). However, the lowest levels of mono- and poly-unsaturated fatty acids were recorded in Al electrode treatment (p<0.05). The lowest harvesting efficiency (67.44 %) was observed in graphite electrode treatment (p<0.05). The highest biosorption of Al and Fe were in the microalgae harvested by Al and Fe electrodes, respectively (p<0.05). Overall, electrocoagulation technique using various electrodes caused significant changes in biochemical composition of N. oculata. Although the highest biosorption of metals was in the microalgae harvested by sacrificial electrodes and even out of the allowed range of human and animal consumption, they would be suitable for biofuel production.

Keyword: Microalgae harvesting, Fatty acids, Electrochemistry, Electrocoagulation, Nannochloropsis oculata

1-Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.
*Corresponding author’s Email: hosseini.pezhman@yahoo.com
Introduction

Microalgae are rapidly growing autotrophic microorganisms which can be used in food industry, medicine, cosmetics, and biofuel production (Lauritano et al., 2019; Hosseini Madani et al., 2020). *Nannochloropsis oculata* is a marine microalga (Eustigmatophyceae) which has a size of about 2-3 \(\mu \)m. Although this microalga is well-known for its ability to produce polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) (Kagan et al., 2014; Borges et al., 2016), several studies have shown the possibility of growing *N. oculata* on a large-scale for biofuel purposes (Richmond, 2008; Sabzi et al., 2021). However, species belong to *Nannochloropsis* cannot be separated from the culture medium by conventional filtration methods due to their small size (Chua and Schenk, 2017). Therefore, finding a fast and cost-effective method to harvest *N. oculata* with minimal negative impacts on its quality can be a significant step towards industrial production of this microalga.

A bottleneck to the commercial production of microalgae is harvesting methods (Borges et al., 2011, 2016; Yin et al., 2020). In fact, utilization of microalgae from the media accounts up to 30% of total processing cost (Al-Yaqoobi et al., 2021; Krishnamoorthy et al., 2021). Although various chemical and natural coagulants are used to flocculate microalgae (Anthony et al., 2013), high concentrations of chemical coagulants (e.g. aluminum sulfate, iron chloride, and ferrous sulfates) may adversely affect the quality of the cell’s compounds and impact the environment (Misra et al., 2014). Recently, harvesting microalgal biomass by electrocoagulation process is introduced as one of the fastest, most efficient, and cheap methods for harvesting microalgae (Matter et al., 2019; Al-Yaqoobi et al., 2021). In this regard, electrochemical harvesting (ECH) method is based on production of metal ions from oxidizing metal electrodes as well as micro-bubbles to facilitate coagulation of microalgae on the surface and/or precipitate at the bottom (Gao et al., 2010; Perreault et al., 2010; Kim et al., 2012a; Matter et al., 2019). Moreover, the microalgal membrane has a negative electric charge due to presence of acidic polysaccharides and therefore, neutralizing negative charges of the cells by produced cations from electrodes in the ECH method causing the microalgal cells to be accumulated and precipitate (Safi et al., 2014). Besides, the capital cost of ECH method (0.35 USD m\(^{-3}\)) was much lower than flocculation with chemical substances (USD 0.47 m\(^{-3}\)) and centrifugation (0.53 USD m\(^{-3}\)) methods (Liu et al., 2018). In terms of harvesting efficiency, using syntactic flocculants to harvest 1 kg of algal biomass depends on the chemical used, acquire 2.30-15.3 USD compared to 1.15 USD for ECH method (Krishnamoorthy et al., 2021).

Recently, one of the most important challenges for commercial-scale
applications of microalgae is related to harvesting process, which is inefficient and costly, so research in this field is much needed and valuable (Krishnamoorthy et al., 2021). Utilization of microalgae with ECH method compared to the conventional methods has several advantages in large-scale applications, such as no direct side effects on the target metabolites (e.g., unsaturated lipids, protein, and carbohydrate), lower operation costs and energy consumption, easy to control, high efficiency, and less toxicity (Ghernaout, 2019; Hua et al., 2020; Al-Yaqoobi et al., 2021; Krishnamoorthy et al., 2021). However, chief drawbacks of ECH method are short lifetime of electrodes and biomass contamination with metal oxides by excessive doses of dissolved anode material in sacrificial electrode use (Matter et al., 2019). Therefore, this study aimed to assess the effect of harvesting N. oculata by ECH method using different sacrificial electrodes including aluminum (Al) and iron (Fe) and a non-sacrificial electrode (graphite) on biochemical composition and fatty acids profile.

Materials and methods
Experimental design
N. oculata strain PGBP-abdf1127 (GenBank: KP258172.1) was prepared from Persian Gulf Biotechnology Park (PGBP) and cultivated in F/2 culture medium (Guillard and Ryther, 1962) at Zakariya al-Razi Complex Laboratory Center (Science and Research Branch, Islamic Azad University, Tehran, Iran) based on Sabzi et al. (2021) method. The microalgae were grown under 80 μmol photon/m²s light intensity, 26±0.5°C temperature, and 12:12 h (dark: light) light cycle conditions. After 14 days, algal biomass was separated from the culture medium during the log phase (~ 40×10⁶ cells/mL) by ECH technique using different electrodes.

To harvest N. oculata by ECH method, a transparent plastic container (cylindrical reactor, 10 L) was equipped with two electrodes (10×4 cm) to clot the algal cells. The electrodes were connected to a direct current (DC) source at a 6-volt adapter and a current of 4 Amps (Misra et al., 2015). Distance from the end of the electrodes to the bottom of the reactor was 8 cm and distance between the electrodes was 1 cm (Fig. 1). Electricity was on for 15 minutes in each treatment. A magnetic stirrer was used to mix the medium inside the reactors at 200 rpm during chemical electrolysis process.

In this study, experimental groups consisted of uniform sacrificial (Al and Fe) and non-sacrificial (graphite) electrodes (1×1×10 cm). Additionally, centrifugation harvesting method (3700×g at 4°C; Sigma 3-30K, Osterode, Germany) was considered as control group. Harvested biomass from all groups were lyophilized by a laboratory freez-dryer (Christ Alpha 1–4, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany) at -54°C and a pressure of 0.04 mbar for 24 h to minimize the effects of heating on the
biochemical compounds of the microalgae (Hosseini Shekarabi et al., 2020).

Figure 1: Schematic diagram of electrochemical technique for harvesting *N. oculata* biomass by different electrodes.

Approximate composition
To measure lipid content, 10 g of the harvested biomass (dry weight) from each treatment was gently homogenized in a mortar to obtain a fine powder and then, the lipid content was extracted by method of Folch *et al.* (1957). One gram of the lyophilized algae was placed in oven at 105°C for 6 hours to calculate moisture content (AOAC, 2000; method 976.05). Ash content was obtained using electric oven at 550°C until the samples’ color was completely white (AOAC, 2000; method 923.03). To measure crude protein content, one gram of the lyophilized algae was digested with sulfuric acid. Then, nitrogen was extracted and titrated with 0.5 N hydrochloric acid using a semi-automatic Kjeldahl apparatus (V50, Bakhshi, Tehran, Iran) and converted to protein content (N × 6.25) (AOAC, 2000; method 976.05).

Determination of fatty acid composition
To determine the composition of fatty acids, derivatization of fatty acids was first performed by boron trifluoride in methanol for 150 mg of the extracted oil (Hosseini Madani *et al*., 2021). The mixture was heated in water bath at 80°C for 2 min and cooled to ambient temperature. The obtained upper organic phase (fatty acid methyl esters) was injected into a gas chromatograph (ACME 6100, Young Lin Instrument Co., Anyang, Korea), equipped with a DB-WAX capillary column (30 m length, 0.25 mm inner diameter, and 0.25 mm thickness) and a thermal conductivity detector. Temperature reached to 180°C and maintained for 5
min and then increased to 220°C at 4°C/min rate and was maintained at this temperature for 25 min. Helium was used as a carrier gas at a rate of 1.5 mL/min. Obtained peaks of fatty acid methyl esters were identified by comparing their retention time with those of authentic standards (Fatty Acid Methyl Ester Mix, 18917AMP; Supelco, Sigma-Aldrich, USA).

Determination of metals residual

To determine heavy metals concentration, 10 mg of dried algal biomass was first digested by nitric acid. Then, according to atomic absorption spectrometer’s guidelines (Varian SpectrAA-200 atomic absorption apparatus, Varian Co., Melbourne, Australia) as well as calibration curves of Al and Fe, the concentrations of the elements were calculated in the solutions (Ahmad and Shuhaimi-Othman, 2010).

Harvesting efficiency

To measure harvesting efficiency, optical density (OD) of the samples in pre-harvest medium (OD_i) and post-harvest medium (OD_f) was measured by a UV-VIS spectrophotometer (Varian Cary 50, Varian Inc., Palo Alto, California, USA) at 680 nm after 5 min from the end of each electrochemical harvesting method as follows (Vandamme et al., 2011):

\[
\text{Harvesting efficiency (HE,\%)} = \left(\frac{\text{OD}_i - \text{OD}_f}{\text{OD}_i}\right) \times 100
\]

Statistical Analysis

All experiments were performed with three replicates (n=3) and the data were presented as mean ± standard deviation (SD). After checking the normality and homogeneity of the data by Kolmogorov-Smirnov and Barlett's tests, respectively. One-way analysis of variance (ANOVA) was performed followed by Tukey's post-hoc test to compare the means at 95% (p<0.05). Data were analyzed using SPSS software version 22.

Results

As shown in Table 1, the contents of fat, protein, and ash of *N. oculata* harvested by different electrodes were significantly different (p<0.05). The highest level of crude protein was observed in control and graphite electrode groups (p<0.05), while the lowest value was measured in Al electrode treatment (p<0.05). Regarding fat and ash contents, the highest values were obtained in the microalgae harvested by Al electrode (p<0.05). The composition of fatty acids in the microalgae harvested by ECH method using different types of electrodes is presented in Table 2. Based on the results, 13 fatty acids were detected and the dominant saturated fatty acid (SFA) was palmitic acid (16:0). The content of oleic acid (18:1) as the major monounsaturated fatty acid (MUFA) was decreased in experimental groups and the lowest value was obtained in Al electrode treatment (p<0.05). The highest EPA was measured in control and graphite electrode groups, while the
lowest value was observed in Al electrode treatment ($p<0.05$). However, the lowest levels of MUFA and PUFA were recorded in Al electrode treatment ($p<0.05$). Maximum amount of MUFA was also seen in control group ($34.68 \pm 0.74 \%$ of total fat) ($p<0.05$).

Table 1: Effect of electrochemical harvesting technique using different electrodes on approximate composition of *N. oculata* (% in dry matter).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Al electrode</th>
<th>Fe electrode</th>
<th>Graphite electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>48.48±0.19 a</td>
<td>41.55±0.10 c</td>
<td>44.89±0.15 b</td>
<td>48.02±0.31 a</td>
</tr>
<tr>
<td>Lipid</td>
<td>18.30±0.25 c</td>
<td>21.95±0.07 a</td>
<td>20.36±0.12 b</td>
<td>18.82±0.33 c</td>
</tr>
<tr>
<td>Ash</td>
<td>20.02±0.23 c</td>
<td>23.79±0.19 a</td>
<td>21.10±0.04 b</td>
<td>19.26±0.04 c</td>
</tr>
<tr>
<td>Moisture</td>
<td>5.61±0.14 a</td>
<td>5.64±0.23 a</td>
<td>5.60±0.08 a</td>
<td>5.59±0.01 a</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation. Different letters in each row indicate significant differences ($n=3$, $p<0.05$). Harvesting method in control group was centrifugation method ($3700 \times g$, 4°C, 10 min).

Table 2: Fatty acids profile of *N. oculata* after harvesting by electrochemical method using different electrodes (% of total fat).

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Control</th>
<th>Al electrode</th>
<th>Fe electrode</th>
<th>Graphite electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyric acid (C4:0)</td>
<td>8.18±1.10 a</td>
<td>7.77±0.06 a</td>
<td>2.06±0.17 b</td>
<td>8.16±0.30 a</td>
</tr>
<tr>
<td>Caproic acid (C6:0)</td>
<td>2.59±0.01 b</td>
<td>3.40±0.06 a</td>
<td>0.74±0.05 d</td>
<td>2.24±0.08 c</td>
</tr>
<tr>
<td>Caprylic acid (C8:0)</td>
<td>12.93±0.11 c</td>
<td>20.86±0.15 a</td>
<td>6.36±0.54 d</td>
<td>15.69±0.40 a</td>
</tr>
<tr>
<td>Decanoic acid (C10:0)</td>
<td>7.85±0.08 c</td>
<td>8.42±0.49 b</td>
<td>9.38±0.20 a</td>
<td>5.14±0.02 d</td>
</tr>
<tr>
<td>Myristic acid (C14:0)</td>
<td>3.06±0.54 a</td>
<td>1.28±0.30 b</td>
<td>1.88±0.18 b</td>
<td>3.43±0.41 a</td>
</tr>
<tr>
<td>Palmitic acid (C16:0)</td>
<td>12.71±0.50 d</td>
<td>34.23±1.03 a</td>
<td>32.53±0.37 b</td>
<td>19.23±0.47 c</td>
</tr>
<tr>
<td>Stearic acid (C18:0)</td>
<td>3.94±0.03 b</td>
<td>5.70±0.29 a</td>
<td>5.86±0.14 a</td>
<td>3.76±0.03 b</td>
</tr>
<tr>
<td>Palmitoleic acid (C16:1)</td>
<td>2.05±0.08 a</td>
<td>0.31±0.04 d</td>
<td>0.56±0.01 c</td>
<td>1.42±0.06 b</td>
</tr>
<tr>
<td>Oleic acid (C18:1; n-9)</td>
<td>31.53±0.40 a</td>
<td>14.01±0.30 d</td>
<td>29.60±0.67 b</td>
<td>27.35±0.03 c</td>
</tr>
<tr>
<td>Erucic acid (C22:1)</td>
<td>1.10±0.09 a</td>
<td>0.36±0.08 c</td>
<td>0.83±0.05 b</td>
<td>1.20±0.02 a</td>
</tr>
<tr>
<td>Linoleic acid (C18:2; n-6)</td>
<td>10.07±0.14 a</td>
<td>2.30±0.01 d</td>
<td>7.65±0.63 c</td>
<td>8.52±0.60 b</td>
</tr>
<tr>
<td>Linolenic acid (C18:3; n-6)</td>
<td>0.50±0.05 a</td>
<td>0.10±0.00 b</td>
<td>0.49±0.02 a</td>
<td>0.13±0.00 b</td>
</tr>
<tr>
<td>Eicosapentaenoic acid (EPA; C20:5; n-3)</td>
<td>3.10±0.10 a</td>
<td>0.73±0.08 c</td>
<td>1.64±0.05 b</td>
<td>3.38±0.24 a</td>
</tr>
</tbody>
</table>

Total: 99.36 99.28 99.37 99.45

Values are presented as mean ± standard deviation. Different letters in each row indicate significant differences ($n=3$, $p<0.05$). Harvesting method in control group was centrifugation method ($3700 \times g$, 4°C, 10 min).

Concentrations of Al and Fe in the dried algal biomass are illustrated in Table 3. The highest accumulation of Fe by microalgae cells was recorded in Fe electrode treatment compared to the other groups ($p<0.05$), while no
significant difference was found among experimental groups to uptake Fe (\(p>0.05\)). In terms of Al concentration, it was only detected in Al electrode treatment.

![Figure 2](image-url)
Figure 2: Changes in saturated fatty acids (SFA), monounsaturated fats (MUFA), and polyunsaturated fatty acids (PUFA) of harvested *N. oculata* by an electrochemical technique using different electrodes. Different superscripts indicate significant differences (\(n=3, p<0.05\)). Error bars show standard deviation.

Harvesting efficiency of the microalgae was influenced in different treatments and the highest value was obtained in Al electrode treatment which was not significantly different from control group (\(p>0.05\); Fig. 3). However, the lowest harvesting efficiency value was observed in graphite electrode (\(p<0.05\); Fig. 3).

![Figure 3](image-url)
Figure 3: Effect of electrochemical technique using different electrodes in harvesting efficiency (%) of *N. oculata*. Different superscripts indicate significant differences (\(n=3, p<0.05\)). Error bars show standard deviation.
Discussion

The ability to accumulate lipids in different microalgae species is highly dependent on cultivation condition and composition of nutrients in the culture medium (Borges et al., 2011; Gao et al., 2013; Rastar et al., 2018; Sabzi et al., 2021). However, quantity and quality of microalgae lipids can be altered by different harvesting methods (Borges et al., 2011, 2016; Hua et al., 2016). In the present study, higher content of lipid was observed in N. oculata harvested by Al and Fe electrodes compared to graphite electrode and control groups. This increase in extraction of lipids may be related to higher cellular damages due to osmotic shock and oxidative destructions of released Al ions in the reactor (Yoo et al., 2012; Lee et al., 2013).

Based on our results, crude protein content of the microalgae harvested by graphite electrode and control groups was significantly higher than other treatments. Higher protein degradation ratio in the microalgae harvested by sacrificial electrodes may be due to extensive oxidative damages (e.g. Fenton-active metal ions oxidation process) and hydroxyl radicals products (Stadtman, 1990). However, more sensitive methods rather than Kjeldahl method in direct protein detection are recommended to compare with our results.

The highest level of ash was seen in N. oculata harvested by metal electrodes, especially in Al electrode treatment. This can be attributed to biosorption of released metals from sacrificial electrodes in the microalgae cells during ECH process. Baierle et al. (2015) represented that ECH techniques of microalgae with inorganic floculants, especially Al, lead to significant decrease in heavy metals concentration of wastewater. This can easily approve that microalgae had ability to bio-absorb released metals from sacrificial metal electrodes and subsequently increase the ash content.

Our findings showed that maximum content of unsaturated fatty acids was in N. oculata harvested by graphite electrode compared to sacrificial electrodes, while maximum level of SFA was obtained in the microalgae harvested by Al electrode. Misra et al. (2014) similarly showed that harvesting Chlorella sorokiniana and Tetrasdesmus obliquus by graphite electrodes did not have a negative effect on composition of fatty acids compared to conventional centrifugation method. Using non-destructive electrodes in ECH method not only released no metal ions to the environment but also oxidative processes would be at the lowest rate, which can prevent breaking down the chains and carbon double bonds of unsaturated fatty acids in post harvested microalgae (Singh et al., 2014; Guldhe et al., 2016).

Saturated fatty acids from microalgae are used to produce biodiesel due to their high thermal and oxidative stability (Singh et al., 2014). However, long-chain unsaturated fatty acids are suitable for pharmaceutical and food applications (Borges et al.,
In the present study reduction of PUFAs, especially EPA, in the microalgae harvested by sacrificial electrodes may be due to the fact that unsaturated fatty acids are highly vulnerable to oxidative processes (Singh et al., 2014; Hosseini Shekarabi and Shamsaie Mehrgan, 2021). Indeed, oxidation and degradation of anode electrode is main drawback of ECH method using sacrificial electrodes (Kim et al., 2012a, 2012b). However, technology of using non-destructive electrodes in ECH method can be used to harvest algal biomass for various industrial and food purposes (Perreault et al., 2010; Misra et al., 2015). On the contrary, Guldhe et al. (2016) pointed out that ECH process did not affect the fatty acid composition of Ankistrodesmus falcatus and T. obliquus biomass by sacrificial electrodes compared to non-sacrificial electrodes (graphite). This conflict in the results can be related to various factors such as environmental conditions, technology used in ECH process, algal biomass density and species (Misra et al., 2014).

The results of this study showed that concentrations of Al and Fe were dramatically increased in the microalgae harvested by sacrificial electrodes and in terms of Al concentration, it exceeded standard limits for aquaculture, irrigation, and even indirect human contact (maximum 10 mg/L) (Uduman et al., 2010). Although concentration of Fe was much higher than that in the algal biomass harvested by centrifugation method (control group), low concentration of Al can cause greater environmental and human hazards compared to Fe (Ribes et al., 2008). In agreement with our results, Baierle et al. (2015) demonstrated that residual level of Al in Desmodesmus subspicatus harvested by Al electrode was more than that harvested by centrifugation method. Since concentration of Al is directly associated with health risks (Bondy, 2010), using Al electrodes in ECH is not an appropriate technique for human or animal consumption, while it is recommended to harvest microalgae with sacrificial electrodes for biodiesel production.

The results of our study showed that harvesting efficiency for N. oculata in sacrificial electrodes was higher than graphite electrode, while harvesting efficiency in control group (centrifugation method) was more than all experimental groups. Although filtration and centrifugation methods have higher harvesting efficiency than ECH methods, these common harvesting methods require more energy and time (Baierle et al., 2015). The process of harvesting microalgae by ECH is influenced by various parameters such as species, size of microalgae, biomass density, and electrochemical conditions (i.e. current intensity, voltage, and type of electrodes) (Misra et al., 2014). From our results, harvesting efficiency of N. oculata in Al electrode treatment was higher than that of Fe electrode. Similarly, Baierle et al. (2015) reported 95.4% harvesting efficiency using Al
Electrodes compared to Fe electrodes (64.7%) for *D. subspicatus*. In general, Al electrodes cause higher harvesting efficiency than Fe and graphite electrodes for three main reasons: (1) Al is more reactive to participate in electrolysis reactions and generate more cations (Al$^{3+}$) than other metals, which can increase flocculation rate of microalgae by binding to the cells (Wong *et al*., 2017); (2) electrical conductivity of Al is more than iron (Cañizares *et al*., 2005; Zongo *et al*., 2009); and (3) higher toxicity of produced aluminum hydroxide accelerates the cell death and consequently sedimentation rate (Duan and Gregory, 2003; Gao *et al*., 2010).

In the present study, harvesting efficiency of *N. oculata* in graphite electrode treatment was 67.66%, which was significantly lower than that of metal electrodes. This may be due to absence of metal cations. In consistence with our results, Misra *et al.* (2014) showed that minimum harvesting efficiency for *C. sorokiniana* and *T. obliquus* was recorded in graphite electrodes treatment in comparison with that of metal electrodes. Also, Vandamme *et al.* (2011) reported a higher harvesting efficiency (about 92%) for *Chlorella vulgaris* by sacrificial electrodes.

This study showed that using sacrificial and non-sacrificial electrodes for ECH of *N. oculata* caused significant changes in lipid and protein contents as well as fatty acids profile. The highest crude protein content and unsaturated fatty acids were seen in the microalgae harvested by graphite electrode. However, the highest level of oils with a high content of saturated fatty acids was extracted from the microalgae harvested by Al electrodes. According to high accumulation of Al in the microalgae cells harvested by Al electrodes, this harvesting technique is recommended for biofuel production, however, further research is required to evaluate its environmental pollution.

Acknowledgments
The authors wish to thank Mr. Hamid Fathalian at Fisheries Laboratory (Science and Research Branch, Islamic Azad University) for helping us to quantify microalgae fatty acids and electrochemical process.

References

DOI:10.1016/j.apenergy.2013.03.003.

Environmental Science and Pollution Research, 24(10), 9102–9110. DOI:10.1007/s11356-016-7856-x.

