Research Article

The effect of Biofloc system on water quality, growth and hematological indices of Juvenile great sturgeon (Huso huso)

Aghabarari M.1; Abdali S.1; Yousefi Jourdehi A.2*

Received: September 2020 Accepted: September 2021

Abstract
The basis of biofloc technology is biomaterials, dead organic particles, microbes, algae, protozoa and other organisms. The biofloc acts as a biological filter and is an environment for bacteria that can remove the ammonia. In this study, for evaluate the effect of biofloc system on physical and chemical parameters of water, growth performance and blood indices, 120 juvenile Huso huso with an initial mean weight of 168.2±2.9 g were introduced in 6 fiberglass tanks with volume 2000 liters and reared for 8 weeks. Treatments included control and a biofloc system with 3 replications in each treatment. During the experiment, physical and chemical parameters of water, growth, and blood indices in fish were measured. Based on the results, a significant decrease was observed in feed conversion ratio (FCR). Specific growth rate (SGR), weight gain and weight gain percentage increased significantly in biofloc system compared to the control (p<0.05). The lowest number of white blood cells, neutrophils and the highest number of red blood cells, hematocrit and mean corpuscular volume (MCV) were observed in the biofloc treatment and there was a significant difference compared to control treatment (p<0.05). Physicochemical parameters results such as pH, NO3, NH3, NH4 and TAN values showed a significant difference in biofloc system compared to the control (p<0.05). In addition, biofloc treatment had more bacteria than the control (p<0.05). Salinity, nitrogen to phosphorus ratio, alkalinity and orthophosphate levels showed no significant difference between control and biofloc system (p>0.05). However, the total amount of suspended solids (TDS) in biofloc treatment was significantly higher in bifloc system than the control (P<0.05). Therefore, biofloc system can be selected as the better treatment than control according to its good performance in farmed beluga.

Keywords: Biofloc, Water quality, Growth, Hematological indices, Huso huso

1- North Tehran Branch, Islamic Azad University, Tehran, Iran
2- International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute (IFSRRI), Agricultural Research Education and Extension Organization (AREEEO), Rasht, Iran
*Corresponding author's Email: ayoub2222002@yahoo.com
Introduction
Sustainable development of aquaculture should be such that it provides maximum production without further use of primary resources such as water and soil, no harm to the environment and the optimal cost-benefit ratio in the economic and social dimension simultaneously. Biofloc system, which is currently one of the most important technologies in the industry, especially fish farming, can help the development of the aquaculture industry with these conditions. By maintaining water quality, biofloc reduce the need for water exchange and reduce the feed conversion ratio of farmed shrimp by producing consumable microbial protein (Abdirad and Ghaednia, 2016).

A biofloc system is a microscopic particle made of bacteria, diatoms and algae, food particles and dead organisms. Biofloc technology is known as the new "water revolution" in the field of aquaculture, because nutrients can be recycled continuously. Reuse in culture medium was obtained using minimal or zero water exchange. Such an environmentally friendly technique is based on the production of microorganisms that play three main roles (1): maintaining water quality by absorbing nitrogen compounds produced (2) feeding, increasing cultivation capabilities by reducing feed conversion ratio (FCR) and feed costs; (3) competition with pathogens as well as correction of carbon to nitrogen ratio in culture medium. In addition, the sustainable approach of such a system is based on high production of small fish or shrimp. In this method, fish or shrimp in an intensive method (at least 300 g per square meter) with minimal water exchange or at zero (Emerenciano et al., 2012a). In addition, biofloc is a rich source of protein and natural fats from locally available foods that are available 24 hours a day due to the complex interaction between organic matter, physical substrate and a wide range of microorganisms. This natural productivity plays an important role in nutrient circulation and maintaining water quality. Using biofloc with fish or shrimp has many benefits such as improved growth rate, reduced FCR, and feed costs (Avnimelech, 2009).

The cost of food accounts for more than 50% of total production costs, most of which are related to the supply of dietary protein sources (Bender et al., 2004). In addition, climate change in recent decades, the occurrence of numerous droughts and lack of fresh water resources are other problems facing this industry (Bakhshi et al., 2016). Due to the valuable freshwater resources, today 41% of the world's people live near rivers facing drought. About 70% of the world's population is projected to face water scarcity by 2050 (Avnimelech, 2009).

Currently, due to higher biosafety and greater environmental benefits of RAS aquaculture systems, the use of these systems has increased. These systems reduce the entry of parasites and species and the burden of bio-pollution (Ray, 2012). The rotational system is based on the principle of reuse of water that is excreted after the breeding
The use of biofloc technology to breed species that are more adapted to environmental conditions is more successful (Souza et al., 2014). The aim is to reduce the contamination of the breeding system by the bacteria in them, and the biofloc, in addition to reducing the contamination of the pool, is eaten by fish. Studies on the effect of biofloc on physical and chemical parameters of water, blood indices and growth of various aquatic animals have been conducted, by Bakhshi et al. (2014) on the efficiency of using biomass production system in common carp (Cyprinus carpio), Khanjani et al. (2016), on the production and evaluation of bioflocs for use in systems without water exchange, Haghparast Radmard et al. (2018), on the effect of different carbon-nitrogen ratios in intensive breeding system Biofloc on growth and health indices of common carp, Khanjani (2019), on the application of biomass technology in aquaculture with emphasis on ornamental fish, Crab et al. (2010), on the application of biofloc technology to protect shrimp saline water (Artemia franciscana) against Vibrio harveyi, Mahanand and Srinivasa (2012), on optimal feed formulation for Labeo rohita with biofloc, Suantika et al. (2015), on the function of the drainage system with nitrifying bacteria and microalgae Chaetoceros calcitrans in super-intensive breeding of white shrimp (Litopenaeus vannamei). Biofloc effect on sturgeon has not been yet studied.

Materials and methods

This experiment was performed in the International Sturgeon Research Institute of the Caspian Sea in 2019. For this study, 120 beluga fish with mean initial weight 168.2±2.9 g were distributed in six tanks under the same environmental conditions after adaptation and reared in 6 fiberglass tanks with 4000 liter in an indoor environmental condition using well water during 8 weeks. Each of the tanks equipped with an aeration system with a flow water rate of 3 liters per minute. Biofloc treatment and control were considered. Chemosynthesizing and nitrifying bacteria such as Nitrosomonas, Nitrozococcus, Nitrozira, Nitrozbolus, and Vibrio were used in the BFT system. Prior to the start of the experiment, the fish were fed for adaptation with a basic diet for one week. The required amount of food was weighed using a digital scale and fed to the fish according to the desired treatments. Fish were fed about 3% of body weight in 4 meals in 8, 12,
16 and 20 hours manually (Sener et al., 2006). Total length recorded to the nearest 1 mm and total weight recorded to the nearest 0.1 g, all measurements were done in all treatments and replications at the beginning and end of the study. Fish feeding was stopped 24 hours before and after the bioassay to reduce stress. According to the length and weight of fish obtained from bioassay, growth parameters were estimated to find the growth trend of fish in the treatments.

- Daily growth (g/day) GR (Merrifield et al., 2011)

 \[\text{GR} = \frac{\text{Bwf} - \text{Bwi}}{\text{n}} \]

 \(\text{Bwi} \) = average initial weight per tank, \(\text{Bwf} \) = average final weight per tank, \(n \) = number of breeding days

- Weight gain percentage (% BWI) (Merrifield et al., 2011)

 \[\text{BWI} = \frac{100}{\text{Bwi}} \times \left(\frac{\text{Bwf}}{\text{Bwi}} - 1 \right) \]

 \(\text{Bwi} \) = average initial weight per tank, \(\text{Bwf} \) = average final weight per tank

- Specific growth rate (percentage per day) SGR (Merrifield et al., 2011)

 \[\text{SGR} = \frac{100}{T} \times \left(\frac{\text{Wt}}{\text{Wo}} - 1 \right) \]

 \(\text{Wo} \) = mean of primary biomass (g), \(\text{Wt} \) = mean of final biomass (g), \(T \) = number of days of rearing

- Obesity coefficient (K or CF) (Merrifield et al., 2011)

 \[\text{CF} = \frac{\text{BW}}{\text{TL}} \]

 \(\text{BW} \) = mean final body weight (g), \(\text{TL} \) = mean total final length (cm)

Feed conversion ratio (FCR): (Merrifield et al., 2011)

\[\text{FCR} = \frac{\text{F}}{\text{Wt} - \text{Wo}} \]

\(\text{F} \) = amount of food consumed by fish, \(\text{Wo} \) = mean of primary biomass (g), \(\text{Wt} \) = mean of final biomass (g)

- Using Rees solution with melange and neobar slide (Klontz, 1994). Hemoglobin was measured using the cyan-meth hemoglobin method and by spectrophotometer (Model 2100-VIS made by Unico USA) with a wavelength of 540 nm (Klontz, 1994). Microhematocrit tubes and a Hettich microcentrifuge at 7000 rpm for 5 minutes were used to measure Survival rate (SR) (Grisdale-Helland et al., 2009) SR=100% (N / T)

\(N \) = fish number at the end of the period, \(T \) = fish number at the beginning of the period

Blood samples were taken from the fish after bioassay and 24 hours after feeding. Blood was drawn from the tail vein using a 2 cc syringe. 0.5 cc of blood inside heparin-containing epinephric tubes for blood counts (Torrecillas et al., 2011). Isolation of serum from blood cells was performed using a centrifuge (Labofuge 200 model, manufactured by Heraeus Sepatech, Germany), at a speed of 3000 rpm in 10 minutes. Serum was isolated using a microsampler and transferred to a vial (Pottinger and Carrik, 2001). Red and white blood cells were counted hematocrit.

96% methanol and 10% Giemsa solution (made by Merck Germany) were used to stain white blood cells and white blood cell counts such as neutrophils, lymphocytes, monocytes and eosinophils were counted by the method. Zigzag took place (Klontz, 1994; Ameri Mahabadi, 1999). Glucose levels were determined using the Glucose C2-test Wako kit and by enzymatic method by motarotase and glucose oxidase (Kubokawa et al., 1999).
Water temperature was measured daily using a conventional thermometer (Bakhshi et al., 2014). pH levels were measured daily for pH dynamics in each biofilter substrate using Mettler Toledo pH meter (Suantika et al., 2016).

Ammonium, nitrite and nitrate were measured daily for chemical parameters using Nessler, diazotized and Nitrate HCl methods, respectively (Ahn et al., 2005). Ammonia water content was measured by spectroscopy using a spectrophotometer (Model 9200CE, Cecil) (Moopam, 1999). Total ammonia nitrogen (TAN) concentration was measured using a photometer 7500 (made in England) (Khanjani et al., 2016). Bacterial counting was performed using the whole plate counting method (Suantika et al., 2012).

Each sample was added to a 0.85% NaCl solution at a ratio of 1:17 v/v and exposed to ultrasonic vibration for 10 minutes using a sonicator (Branson 3510-DTH) to separate the cells. Be fragmented. Then 100 μL of the solution dissolved in Vinogradsky agar medium for the growth of oxidizing bacteria ammonium and nitrite and in the nutrient agar medium for the growth of heterotrophic bacteria, each was distributed in three pieces (Cappuccino and Sherman, 2012).

SPSS 22 software was used to analyze all the data and Excel 2020 program was used to draw the graphs. This study was conducted in a completely randomized design. At first, the normality of the data was tested by Shapiro-Wilk test. When the data distribution was normal, to compare the mean of the data between different treatments of the analysis of variance, one One-way ANOVA and Tukey test were used to isolate homogeneous groups at 5% probability level and non-parametric Kruskal-Wallis test was used when the data were not normal. Data presented as standard±SD.

Results

Physical and chemical parameters
The results of water physical and chemical parameters showed no significant difference in water temperature and NO₂ between treatments (p>0.05). NO₃, NH₃, NH₄, TAN, pH and total bacteria count showed significant difference between the treatments (p<0.05) (Table 1).

Growth performance
Based on the obtained results, no significant difference was observed in final weight, final length, average daily growth, survival percentage and obesity coefficient between treatments (p>0.05). There was a significant difference in feed conversion ratio, specific growth rate, weight gain and weight gain percentage between treatments (p<0.05) (Table 2).
Table 1: Results of water physical and chemical parameters during 8 weeks.

<table>
<thead>
<tr>
<th>Indices</th>
<th>Control</th>
<th>Biofloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>18.50 ± 0.20a</td>
<td>18.47 ± 0.15a</td>
</tr>
<tr>
<td>Dissolved oxygen (mg L⁻¹)</td>
<td>7.90 ± 0.01a</td>
<td>8.20 ± 0.02a</td>
</tr>
<tr>
<td>pH</td>
<td>7.8 ± 0.09a</td>
<td>7.60 ± 0.12a</td>
</tr>
<tr>
<td>NO₃ (ppm)</td>
<td>0.018 ± 0.008a</td>
<td>0.076 ± 0.001b</td>
</tr>
<tr>
<td>NO₂ (ppm)</td>
<td>0.007 ± 0.002a</td>
<td>0.004 ± 0.002b</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>0.0154 ± 0.002a</td>
<td>0.006 ± 0.036b</td>
</tr>
<tr>
<td>NH₄ (ppm)</td>
<td>0.245 ± 0.016a</td>
<td>0.2133 ± 0.025b</td>
</tr>
<tr>
<td>TAN (ppm)</td>
<td>0.263 ± 0.015a</td>
<td>0.217 ± 0.021b</td>
</tr>
<tr>
<td>Total bacteria (n cm⁻³)</td>
<td>351.6 ± 350a</td>
<td>31467.5 ± 18631b</td>
</tr>
<tr>
<td>Salinity (ppt)</td>
<td>0.20 ± 0.01a</td>
<td>0.22 ± 0.01a</td>
</tr>
<tr>
<td>TSS (mg L⁻¹)</td>
<td>550 ± 30a</td>
<td>600 ± 35b</td>
</tr>
<tr>
<td>N/P</td>
<td>1:0.003a</td>
<td>1:0.001a</td>
</tr>
<tr>
<td>Alkalinity (CaCO₃) (mg L⁻¹)</td>
<td>176.50 ± 13.70a</td>
<td>192.30 ± 15.10a</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>0.771 ± 0.064a</td>
<td>0.576 ± 0.003b</td>
</tr>
</tbody>
</table>

Various letters in each row indicate the significant difference between the treatments (p<0.05).

Table 2: Growth performance of *H. huso* in different treatments during 8 weeks.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Biofloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (g)</td>
<td>168.20 ± 2.90a</td>
<td>168.20 ± 2.90a</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>653.70 ± 28.94a</td>
<td>664 ± 31.06a</td>
</tr>
<tr>
<td>Initial length (cm)</td>
<td>35.50 ± 0.41a</td>
<td>35.8 ± 0.58a</td>
</tr>
<tr>
<td>Final length (cm)</td>
<td>48.60 ± 0.90a</td>
<td>51.20 ± 1.10a</td>
</tr>
<tr>
<td>FCR</td>
<td>1.50 ± 0.16a</td>
<td>1.20 ± 0.33b</td>
</tr>
<tr>
<td>SGR (%)</td>
<td>1.80 ± 0.06a</td>
<td>2.00 ± 0.01b</td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>488.70 ± 29a</td>
<td>496.50 ± 32a</td>
</tr>
<tr>
<td>Body weight increase (%)</td>
<td>281.80 ± 12.10a</td>
<td>288 ± 7.60b</td>
</tr>
<tr>
<td>Mean daily growth (g day⁻¹)</td>
<td>6.80 ± 0.90a</td>
<td>7.10 ± 0.30a</td>
</tr>
<tr>
<td>CF (%)</td>
<td>0.50 ± 0.00a</td>
<td>0.52 ± 0.01a</td>
</tr>
<tr>
<td>Survival rate (%)</td>
<td>100 ± 0.00a</td>
<td>100 ± 0.00a</td>
</tr>
</tbody>
</table>

Various letters in each row indicate the significant difference between the treatments (p<0.05).

Blood indices

Based on the results of blood indices, there was no significant difference in hemoglobin, MCH and MCHC between the treatments (p>0.05). Differential count results of white blood cells showed a significant difference in neutrophil and lymphocyte count (p<0.05), but there was no significant difference in monocyte and eosinophil percent between the treatments (p>0.05). White blood cell count, red blood cell count, hematocrit and MCV showed significant difference between the treatments (p<0.05) (Table 3).
Table 3: Blood indices changes of H. huso in different treatments during 8 weeks.

<table>
<thead>
<tr>
<th>Indices</th>
<th>Control</th>
<th>Biofloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood cells (n m$^{-3}$)</td>
<td>7800.67 ± 450.92 a</td>
<td>6500 ± 458.26 b</td>
</tr>
<tr>
<td>Red blood cells (n mm$^{-3}$)</td>
<td>6.30 ± 0.50a</td>
<td>6.90 ± 0.58b</td>
</tr>
<tr>
<td>Hb (g dl$^{-1}$)</td>
<td>5.83 ± 0.12a</td>
<td>6.10 ± 0.15a</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>22 ± 1a</td>
<td>24.60 ± 1.53b</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>331.20 ± 6.11a</td>
<td>340.67 ± 10.01b</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>90.10 ± 1a</td>
<td>85.33 ± 1.53a</td>
</tr>
<tr>
<td>MCHC (g dl$^{-1}$)</td>
<td>28.80 ± 0.35a</td>
<td>25.47 ± 0.25a</td>
</tr>
<tr>
<td>Neutrophile (%)</td>
<td>15.33 ± 0.58a</td>
<td>11.67 ± 1.53b</td>
</tr>
<tr>
<td>Lymphocyte (%)</td>
<td>78 ± 1.73a</td>
<td>85 ± 1.73b</td>
</tr>
<tr>
<td>Mnocyte (%)</td>
<td>5 ± 1a</td>
<td>4.33 ± 1.16a</td>
</tr>
<tr>
<td>Eosinophile (%)</td>
<td>0.87 ± 0.58a</td>
<td>1 ± 0.72a</td>
</tr>
</tbody>
</table>

Various letters in each row indicate the significant difference between the treatments ($p<0.05$).

Discussion

An important factor in order to increase profitability in the aquaculture industry is to achieve the desired growth (Zakeri, 2009). Growth is one of the factors that affect the commercial production capacity of fish (Sharif Rouhani and Iran, 2010). Water temperature, feeding rate, and fish size are the most important growth factors in fish (Sener et al., 2006). The results of the present study showed that there was a significant difference between growth performances, feed conversion ratio factors, specific growth rate, weight gain, and weight gain percentage. There was no significant difference in other growth indicators. However, the most appropriate values were observed in most cases in the biofloc treatment compared to the control. Perhaps the reason for the high growth indices in the treatments containing biomass was explained by the fact that the presence of bacteria in them acted as a factor to improve environmental conditions and the existence of these conditions led to better life of fish.

Numerous studies have been shown that biofloc increases growth in Mozambican tilapia (Oreochromis mossambicus) (Avnimelech, 2007), freshwater shrimp (Macrobrachium rosenbergii) (Asaduzzaman et al., 2008) and western white shrimp (Litopenaeus vannamei) (Xu et al., 2012). The use of biofloc system in ruho fish significantly increased the growth of this fish compared to the control treatment (Kamilya et al., 2017). Avnimelech (1999) stated that biofloc could meet the need for protein and other nutrients for Mozambican tilapia. Khademi Hamidi et al. (2019), by studying carp, stated that growth and nutrition performance was significantly higher in the molasses-containing treatment than the control treatment. Mahanand et al. (2013), in a study of Labeo rohita juveniles, found that fish raised in the biofloc system had a higher mean final weight and higher specific growth rate than the control treatment. However, they had lower feed conversion ratio and protein yield rate than the control treatment and concluded that the biofloc system is suitable for
breeding Ruho. This result indicates that the type of food and diet and species of fish affect the efficiency of the biofloc system. The results of the above studies are somewhat consistent with the results of the present study. Andriani et al. (2019), by studying tilapia, stated that the results of weight gain did not differ significantly between different treatments. However, the highest value was observed in the biofloc treatment and the lowest in the control treatment. Using a biofloc system for fish farming has advantages such as improving growth rate (Wasielesky et al., 2006) and reducing feed conversion ratio (Burford et al., 2004).

The results of the present study showed that among the different treatments, the biofloc treatment had better conditions in terms of blood indices. The lowest number of white blood cells, monocytes, and neutrophils and the highest number of red blood cells, hemoglobin, hematocrit, and MCV were observed in this treatment. Blood composition changes under the influence of physiological and pathological factors (Jamalzadeh et al., 2008). The study of blood composition leads to the recognition of health status (Bani and Haghi-Vayghan, 2011) and aquatic physiology (Hued and Bistoni, 2002). Indicators such as white blood cells, red blood cells, hematocrit, hemoglobin, MCHC, MCV, and MCH indicate the health status of fish (Michael et al., 2019). Studies have shown that the number of total homocytes in shrimp in biofloc treatments was significantly higher than the control group (Xu and Pan, 2013). The results of the above studies are consistent with the results of the present study. The use of biofloc system for breeding African catfish (Clarias gariepinus) increased glucose at high density (1000 per square meter) (Hastuti and Subandiyono, 2018).

Water pollution is a physical, chemical, and biological change that eventually leads to disease in ecosystem organisms (Svobodova and Vykusova, 1991). Water quality directly affects aquatic health (Yildiz et al., 2017). Biofloc system improves water quality and aquatic environmental conditions (Azimi et al., 2016).

The results of the present study showed that biofloc treatment has lower (better) values than the control in many physical and chemical factors of water. The best and most appropriate values of pH, NO$_3$, NO$_2$, NH$_3$, NH$_4$ and TAN were observed in this treatment, which is also due to the presence of bacteria in the biomass. The effect of temperature on the biofloc technology used for tilapia did not show a significant difference compared to the control group (Long et al., 2015) which in this study was not observed in this regard. Andriani et al. (2019), by examining the Nile tilapia in 4 different environments, showed that there was a more suitable pH in the treatment containing biomass compared to the control treatment. In an intensive breeding system, contamination by ammonia nitrogen and nitrite is an important stress factor that also affects the aquaculture system (Tovar et al.,...
The number of nitrifying bacteria in the water determines the concentration of ammonia, nitrate, and nitrite (Andriani et al., 2018). Khademi Hamidi et al. (2019), by studying carp, stated that although compared to other experimental treatments, the water change of the control treatment was 10% more daily, but there was no significant change in its quality, which indicates good performance of the biofloc system. The study of the effect of biofloc technology on tilapia showed that the concentration of nitrate and nitrite in the biofloc treatment was significantly lower than the control treatment (Long et al., 2015). The results of a study on Carassius auratus showed that the biofloc system significantly reduced ammonia nitrogen after 14 days, nitrite, and nitrate after 7 days (Wang et al., 2015). In addition, Azimi et al. (2016), by studying common carp, stated that the amount of total ammonia nitrogen decreased in different treatments due to the formation of biofloc in the system and the presence of nitrogen-digesting bacteria in water. Adineh and Hersij (2018) studied the effect of different levels of biofloc on water quality, growth performance, and survival of Litopenaeus vannamei shrimp larvae and stated that water quality and some growth indices improved. Ammonia and nitrite levels decreased and total suspended solids increased.

Widanari et al. (2012). Evaluated the effect of biofloc technology (BFT) application on water quality and production performance of red tilapia (Oreochromis sp.) at different stocking densities. Three different fish densities were applied, i.e. 25, 50, and 100 fish.m\(^{-3}\), and for each density there were Control (without external carbon input) and BFT treatments. Mixed sex red tilapia with an initial average body weight 77.89±3.71 g was cultured in 3 m\(^3\) concrete tanks for 14 weeks. Molasses was added on BFT treatments as the organic carbon source at a C/N ratio of 15. Control treatments of each density tested showed more fluctuated water quality parameters throughout the experimental period. The highest TAN and nitrite-nitrogen were observed in control treatment at a stocking density of 100 fish.m\(^{-3}\) (3.97 mg TAN/L and 9.29 mg NO2-N/L, respectively). The highest total yield was observed in control treatment at the highest density treatment (43.50 kg), whereas the highest survival was obtained by BFT treatment at a density of 25 fish.m\(^{-3}\) (97.78±0.77%). Total feed used in BFT was lower than that of control treatments in particular at 50 fish.m\(^{-3}\) density (\(p<0.05\)).

By adding the right amount of carbohydrates to water and adjusting the carbon to nitrogen ratio, heterotrophic bacteria absorb the resulting food and optimally form a biofloc, in which case ammonia and nitrite in the water are reduced (Asaduzzaman et al., 2008). It should be noted that excessive consumption of biofloc disturbs the balance of heterotrophic bacteria in the farming system (Adineh and Hersij, 2018). The total amount of suspended solids is a true indicator of biomass or biofloc (Avnimelech et al., 1994). In a
biofloc system, the management of the floc control is very important. Because excessive production of total dissolved solid (TDS) in the aquatic environment can create a negative response in the process of growth and survival (Adineh and Hersij, 2018).

Heterotrophic bacteria use carbon dioxide and excess nitrogen from water to produce microbial proteins and reduce the concentration of inorganic nitrogen in water (Burford et al., 2004). Khanjani et al. (2016), using the biofloc system in western white shrimp farming systems, stated that the system increases the density of heterotrophic bacteria and expands the flock by the system without changing the water and adding organic matter. Suantika et al. (2016), examining different substrates, stated that although ammonium removal was observed in all experimental groups, nitrification bacteria, the rate of ammonium oxidation and nitrification bacteria increased the amount of ammonium significantly. They decreased more than the control treatment. Microbial flakes caused the residual food and excretory material to be re-spun and reused by fish, improving food absorption, especially in conditions without water exchange (Xu and Pan, 2012). Andriani et al. (2018), by studying tilapia, stated that the type of filter in the aquaponic system affects the amount of nitrosomonas bacteria in the water. In a general conclusion, the treatment containing biomass can be selected as the best treatment according to their performance, because they improved the conditions and increased the efficiency of the breeding system. Even if they are not used directly by aquatic animals, their presence improves living conditions.

References

growth, blood biochemical indices, digestive enzymes and water quality in a biofloc system. *Fish and Shellfish Immunology*, 95, 440-448. DOI: 10.1016/j.fsi.2019.10.057.

Moopam, 1999. Manual of Oceanographic Observation and

Widanari, W., Ekasari, J. and Siti, M., 2012. Evaluation of biofloc technology Application on water quality and production performance of Red Tilapia (Oreochromis sp.) Cultured at
Different Stocking Densities.

Zakeri, M., 2009. Effects of different levels of dietary protein and fat on biological function in *Acanthopagrus latus* breeders. PhD. thesis. Khorramshahr University of Marine Sciences and Technology. 205 P.