Prevalence and intensity of *Paradiplozoon homoion* (Monogenea: Diplozoidae) from Manyas spirlin, *Alburnoides manyasensis*, an endemic fish of Turkey: new host and geographical record

Aydoğan N.¹; Avenant-Oldewage A.²; Dos Santos Q.M.²; Aydoğan A.³*

Received: August 2019
Accepted: September 2020

Abstract

In this study, the occurrence of a parasitic helminth infecting a Turkish endemic fish, Manyas spirlin, *Alburnoides manyasensis* from the Nilüfer stream, Bursa, was studied from winter 2017 to autumn 2018. A total of 46 *A. manyasensis* were examined for the presence of the helminth. The helminth was identified as *Paradiplozoon homoion* (Monogenea: Diplozoidae) and occurred on the gills of host fish. A total of 115 specimens of *P. homoion* infected 32 of 46 fish examined, with prevalence and mean intensity of infection of 69.57% (41.67% in Summer to 90.00% in Winter) and 3.59 (1.00 in Summer to 6.22 in Winter) respectively. Additionally, prevalence and mean intensity of infection was calculated per seasons, host size and sex. The highest values for prevalence and intensity of infection were found in winter for *P. homoion*. To our knowledge, this is the first ichthyoparasitological study for *A. manyasensis* in Turkey. This is also the first record of *P. homoion* from this host fish and locality.

Keywords: Turkey, Manyas spirlin, *Alburnoides manyasensis*, *Paradiplozoon homoion*, Seasonality, Infection statistics, Monogenea

1-Balıkesir University, Graduate School of Natural and Applied Sciences, Department of Hydrobiology, Balıkesir, Turkey
2-Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
3-Uludag University, Faculty of Veterinary Medicine, Department of Aquatic Animal Diseases, Görükle – Bursa, Turkey
*Corresponding author’s Email: aydogdu@uludag.edu.tr
Introduction
As many as 409 freshwater fish species have been reported from Turkey’s inland waters, 194 of these are endemic (Çiçek et al., 2018). Considering family level distribution, the largest number of endemic species (110 species) are cyprinids, which include 8 species of the genus Alburnoides Jeitteles, 1861. Alburnoides manyasensis (Turan et al., 2013), commonly known as “Manyas spirlin”, has a very limited distribution and occurs predominantly in tributaries of the Marmara Sea, Balcıkesir Province. This study is the first ichthyoparasitological survey on this fish.

To date, 6 diplozoid species have been reported from Turkey, 5 species of the genus Paradiplozoon (Paradiplozoon homoion (Bychowsky and Nagibina, 1959), Paradiplozoon megan (Bychowsky and Nagibina, 1959) Achmerov 1974, Paradiplozoon bingolense (Civáňová et al., 2013), Paradiplozoon bliccae (Reichenbach-Klinke, 1961) and Paradiplozoon barbi (Reichenbach-Klinke, 1961) and from the genus Diplozoon there is Diplozoon paradoxum Von Nordmann 1832 (Öktener, 2015; WoRMS, 2020). Until 2000, morphological characteristics were predominantly used for description and identification of diplozoid species, thereafter molecular characterization supplement morphology (Matejusová et al., 2001, Civáňová et al., 2013, Avenant-Oldewage et al., 2014, Dos Santos et al., 2015, Dos Santos and Avenant-Oldewage 2016; Dos Santos and Avenant-Oldewage, 2020). Most of the diplozoid species recorded from Turkey, with the exception of P. barbi, have been studied using molecular techniques and can be readily identified using available genetic data. This study presents the first report of the molecular characterization of P. homoion collected from Turkey, though this species is well known and studied from other localities.

Paradiplozoon homoion was previously reported in Turkey from flower fish, common carp, bleak, roach, bream, white bream and rudd (Koyun and Altunel, 2007, Soylu, 2007, Soylu and Emre, 2007, Öztürk, 2011, Akmirza and Yardımcı, 2014, Öztürk and Özer, 2015, Yardımcı et al., 2018). However, this study provides the first record of P. homoion from the endemic A. manyasensis. This is also the first record of the parasitic helminth fauna of A. manyasensis in the Nilüfer stream. Information about preference regarding season and host variables (size and sex) is also provided.

Materials and methods
Forty-six individuals of Alburnoides manyasensis were collected from Nilüfer stream (Bursa) between Winter 2017 and Autumn 2018, with seasonal intervals. Fish were collected from the stream by electrofishing. During each sampling effort, 10 to 12 A. manyasensis specimens were collected. The fish were transferred to plastic
containers with stream water and were immediately transported to the research laboratory. Fish were kept in 20L aerated aquaria and examined within 2 to 3 hours of collection. They were killed by severing the spinal cord posterior to the cranium, then measured and divided into two groups based on length, the first group 2.00 to 7.00 cm and second group 7.10 to 12.00 cm. The sex of each fish was determined during dissection; 22 were female and 24 male. All internal organs, gill filaments, eyes, fins and the body surface were examined for parasites using a stereomicroscope. One monogenean species was collected from the gills and either prepared using glycerin ammonium picrate (Malmberg, 1957) or preserved in absolute ethanol. Data on the host fish was categorized according to the season of collection and host length and sex. Prevalence and intensity of infection were calculated following Bush et al. (1997). Data were analyzed using SPSS v. 25 to determine the significance of trends and differences among variables. Morphological identification of the monogenean species was done following Khotenovsky (1985) and confirmed with DNA analysis. Genomic DNA was extracted from one individual using a NucleoSpin® Tissue kit (Macherey-Nagel, Germany) following the manufacturer’s protocols. A fragment of ITS2 rDNA was amplified using primers D (5’-GGCTYRYGGNGTCGATGAAGAACGCAG-3’) and B1 (5’-GCCGGA TCCGAATCTCCGTAGTTCTTTT CCT-3’), according to reaction conditions of Matejusová et al. (2001). Successful amplification was verified in 1% GelRed (Biotium) impregnated agarose gel and amplicons sequenced using BigDye v3.1 chemistry (Applied Biosystems) following Avenant-Oldevage et al. (2014). Electropherograms were inspected and edited manually (if required) using Geneious R6 (Kearse et al., 2012) and run through the BLAST (NCBI) database (Altschul et al., 1990) to identify the species.

Results

Based on the morphology observed for the collected parasite specimens, the worms were identified as *Paradiplozoon homoion*. The generated genetic data was identical to sequence data currently available from GenBank for *P. homoion* (accession numbers KP340972, AJ300715 and AF369760), confirming the identification of the worms.

Out of 46 *A. manyasensis* examined 32 were infected with 115 parasite specimens. Infection variables were recorded as follows: prevalence 69.57%, mean intensity 3.59, and abundance 2.50 (Table 1). The parasites were collected in four different seasons and thus the infection variables were also calculated per season, as per Table 1. The highest prevalence and intensity were recorded in winter, with the lowest values observed in summer. The significance of the differences in
number of parasites collected per season were calculated using a Mann-Whitney U test, which indicated that there was significant difference between infection in summer compared to winter \((p<0.001, U=8.50) \) and spring compared to winter \((p=0.001, U=13.00) \).

Table 1: Prevalence, abundance and mean intensity values of *Paradiplozoon homoion* in *Alburnoides manyasensis* from Nilüfer stream, Bursa, Turkey for four different seasons.

<table>
<thead>
<tr>
<th>Infection parameters</th>
<th>Winter 2017</th>
<th>Spring 2018</th>
<th>Summer 2018</th>
<th>Autumn 2018</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fish examined</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Number of infected fish</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Prevalence (%)</td>
<td>90.00</td>
<td>66.67</td>
<td>41.67</td>
<td>83.33</td>
<td>69.57</td>
</tr>
<tr>
<td>Abundance</td>
<td>5.60</td>
<td>1.17</td>
<td>0.50</td>
<td>3.25</td>
<td>2.50</td>
</tr>
<tr>
<td>Mean intensity</td>
<td>6.22</td>
<td>1.38</td>
<td>1.00</td>
<td>2.80</td>
<td>3.59</td>
</tr>
<tr>
<td>Maximum intensity</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

The prevalence and intensity levels of *P. homoion* according to length and sex of the host fish are presented in Table 2. Higher prevalence was observed in larger fish (75.00%) compared to those in small size class (57.14%). Similarly, the mean intensity reached its maximum level (4.21) in large size classes. According to Kendall’s Tau test, the variables of host size and number of parasites was strongly positively correlated \((p=0.009, \tau=0.29) \). Prevalence level of *P. homoion* was higher in females (77.27%) than males (60.00%), whereas the mean intensity was higher in males (4.92) compared to females (3.18). However, the difference were not significant based on Mann-Whitney U test \((p=0.898; U=215.00) \).

Table 2: Prevalence and intensity values of *P. homoion* in *A. manyasensis* from Nilüfer stream according to host length and sex.

<table>
<thead>
<tr>
<th>Fish length (cm)</th>
<th>Number of fish examined</th>
<th>Number of infected fish</th>
<th>Prevalence (%)</th>
<th>Mean intensity</th>
<th>Maximum intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00-7.00</td>
<td>14</td>
<td>8</td>
<td>57.14</td>
<td>1.75</td>
<td>5</td>
</tr>
<tr>
<td>7.10-12.00</td>
<td>32</td>
<td>24</td>
<td>75.00</td>
<td>4.21</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fish sex</th>
<th>Number of fish examined</th>
<th>Number of infected fish</th>
<th>Prevalence (%)</th>
<th>Mean intensity</th>
<th>Maximum intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>22</td>
<td>17</td>
<td>77.27</td>
<td>3.18</td>
<td>10</td>
</tr>
<tr>
<td>Male</td>
<td>20</td>
<td>13</td>
<td>60.00</td>
<td>4.92</td>
<td>10</td>
</tr>
<tr>
<td>Juvenile</td>
<td>4</td>
<td>2</td>
<td>50.00</td>
<td>1.00</td>
<td>1</td>
</tr>
</tbody>
</table>
Discussion

Table 3: Prevalence and mean intensity values of *Paradiplozoon homoion* in different host fishes from Turkey.

<table>
<thead>
<tr>
<th>Host</th>
<th>Prevalence (%)</th>
<th>Mean intensity</th>
<th>Authors</th>
<th>City</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. alburnus</td>
<td>30.2</td>
<td></td>
<td>Koyun</td>
<td>Kütahya (Turkey)</td>
<td>2001</td>
</tr>
<tr>
<td>R. rutilus</td>
<td>10.4</td>
<td></td>
<td>Öztürk</td>
<td>Bursa (Turkey)</td>
<td>2005</td>
</tr>
<tr>
<td>A. chalcoides</td>
<td>6.2</td>
<td></td>
<td>Öztürk</td>
<td>Bursa (Turkey)</td>
<td>2005</td>
</tr>
<tr>
<td>P. antalyae</td>
<td>73.6</td>
<td>8.1±0.4</td>
<td>Soylu and Emre</td>
<td>Antalya (Turkey)</td>
<td>2007</td>
</tr>
<tr>
<td>C. carpio</td>
<td>1.3</td>
<td></td>
<td>Soylu and Emre</td>
<td>Antalya (Turkey)</td>
<td>2007</td>
</tr>
<tr>
<td>P. antalyae</td>
<td>54.6</td>
<td></td>
<td>Soylu</td>
<td>Antalya (Turkey)</td>
<td>2007</td>
</tr>
<tr>
<td>A. alburnus</td>
<td>30.0</td>
<td></td>
<td>Koyun and Altunel</td>
<td>Lake Enne (Turkey)</td>
<td>2007</td>
</tr>
<tr>
<td>C. carpio</td>
<td>54.4</td>
<td></td>
<td>Aydogdu et al.</td>
<td>Bursa (Turkey)</td>
<td>2009</td>
</tr>
<tr>
<td>R. rutilus</td>
<td>5.4</td>
<td>0±0</td>
<td>Öztürk</td>
<td>Bahaşesir (Turkey)</td>
<td>2011</td>
</tr>
<tr>
<td>A. mossulensis</td>
<td>19.8</td>
<td></td>
<td>Tunç and Koyun</td>
<td>Bingöl (Turkey)</td>
<td>2018</td>
</tr>
</tbody>
</table>

Prevalence levels recorded in the present study (69.57%, 32 out of 46 fish examined) were similar compared to findings of Soylu and Emre (2007) who reported 73.6% prevalence of *P. homoion* infecting *P. antalyae* from Kepez, Antalya.

In terms of seasonal variation, the highest prevalence was recorded in winter, while it was lowest in summer (Table 2). Influence of season on infection level of this species was investigated by some of the above mentioned records (Öztürk, 2005; Koyun and Altunel, 2007; Soylu, 2007; Soylu and Emre, 2007; Öztürk, 2011; Tunç and Koyun, 2018). Soylu (2007) reported that prevalence of *P. homoion* was highest in flower fish in winter (79.3%) and lowest in spring, corroborating the findings presented here.

In the present study, prevalence and mean intensity of *P. homoion* was highest in larger fish with a range of 7.10-12.00 cm (Table 3). The
relationship between the level of *P. homoion* infection and size of fish is studied by Koyun (2001), Soylu (2007) and Öztürk (2011). All of these authors found a negative correlation between the infection level of *P. homoion* and host length in contrast to our findings. They postulated that infection may be related to the inability of small fish to resist parasites resulting in more parasites. We suggest that *P. homoion* infection increased with the size of hosts as larger fish provide more space for parasite attachment as suggested by Koyun and Altunel (2007), Tekin-Özan et al. (2008), Kurupınar and Öztürk (2009), and Aydogdu et al. (2014, 2015). It may also be possible that *P. homoion* opportunistically infected *A. manyasensis* which has not yet developed resistance to the parasite as the host mature. This may indicate a recent colonization of this host species by the diplozoid.

Paradiplozoon homoion infection with respect to sex was highest on females for prevalence but higher on males for mean intensity (Table 2). On the other hand, Tunç and Koyun (2018) claim the opposite as they found higher *P. homoion* infections in male fish. This may indicate that the males of *A. mossulensis* and the females of *A. manyasensis* have similar behavior or feeding habits.

In conclusion, the present study is the first parasitological survey of *A. manyasensis*, which found to be infected by *P. homoion*. It is therefore a new parasite species record for the host fish in Turkey and a new locality for distribution of *P. homoion*. Additionally, the present study adds some valuable information on seasonal occurrence and the physical parameters (length and sex) of the host on infection variables of the parasite.

References

Aydogdu, A., Erk’akan, F., Keskin, N., Innal, D. and Aslan, I., 2014. Helminth communities of the Turkish endemic fish,

Aydoğdu et al., 2001. Prevalence and intensity of Paradiplozoon homoion from ... Zoological Institute, Moscow, Russia, 263 P.

Soylu, E., 2007. Seasonal occurrence and site selection of Paradiplozoohomoion (Bychowsky and Nagibina, 1959) on the gills of...
Pseudophoxinusantalyae

Tekin-Ozan, S., Kır, I. and Barlas, M., 2008. Helminth parasites of common carp (Cyprinus carpio L., 1758) in Beysehir Lake and populations dynamics related to month and host size. Turkish Journal of Fisheries and Aquatic Sciences, 8, 201-205.

