Effects of dietary purslane (*Portulaca oleracea*) extract on growth performance, hematological indices and immune responses of rainbow trout (*Oncorhynchus mykiss*) fry

Mohammadalikhani M.¹; Shamsaie Mehrgan M.¹*; Haghighi M.²; Soltani M.³; Kamali A.¹

Received: July 2019 Accepted: November 2019

Abstract

Inclusion of dietary herbal supplements in aquafeed can be considered as a growth promoter and enhancer of immunity system in preventing various fish infections. Therefore, this experiment was conducted to evaluate the effects of different levels of purslane (*Portulaca oleracea*) extract (POE) on growth performance, hematological indices and immune responses of rainbow trout fry. The fries with initial weight of 3.3±0.1g were divided into four groups with feeding diets supplemented containing 0% (control, T₀), 0.5% (T₁), 1% (T₂), 1.5% (T₃) and 2% (T₄) of POE for 56 days. After eight weeks of feeding trial, enriched POE diets significantly increased red blood cell count, white blood cell count, hematocrit, hemoglobin concentration, mean corpuscular hemoglobin (MCHC), neutrophil and monocyte percentages, especially in T₃ group compared to the control group (*p*<0.05). Although no significant differences were observed between eosinophil percentage and MCHC, but lymphocyte percentage decreased significantly (*p*<0.05). Also supplemented diets with POE significantly increased immune parameters including total immunoglobulin (Ig), IgM, complementary activity, total protein and lysozyme activity in all experimental groups, especially in T₃ (1.5% POE) compared with the control group (*p*<0.05). This study demonstrates POE as a potential immunostimulant to stimulate and improve immune system of rainbow trout fry.

Keywords: *Portulaca oleracea*, *Oncorhynchus mykiss*, Growth performance, Hematological indices, Immune responses.

1-Department of Fisheries Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2-Cold-water Fishes Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Tonekabon, Iran
3-Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Iran.
* Corresponding author's Email: m.shamsaie@srbiau.ac.ir
Introduction

In recent years using safe substances, such as herbal plants, help improve growth performance and immune system in feeding of farmed fish (Dadar et al., 2016; Mohammadi et al., 2018, Samavat et al.; 2019). Immunostimulants are substances which enhance non-specific defense mechanism and provide resistance against pathogen organisms (Citarasu et al., 2002). In recent years, there is a growing attention to the effects of herbal products on immune system of farmed fish due to several reasons, such as eco-friendly, cost-effective and also being a potential alternative for chemotherapy and chemical drugs (Jeney et al., 2009; Mohammadi et al., 2018). Many plant-derived compounds are found to have positive effects on hematological and immune system of farm-raised fish, such as Aloe vera extract, ginger (Zingiber officinale), peppermint (Mentha piperita), date palm (Phoenix dactylifera) seed, and grapefruit (Citrus paradisi) peel extracts (Haghghi and Sharif Rohani 2013; Adel et al., 2016; Haghghi et al., 2017; Bazari Moghaddam et al., 2017; Mohammadi et al., 2018; Samavat et al., 2019).

Portulaca oleracea belonging to the family Portulacaceae is a kind of common plant that grows in many parts of the world especially in Iran (Mousavi et al., 2015). Purslane is a warm-climate plant and is widely distributed in tropical and subtropical areas of the world (Levey, 1993). Its contents include: flavonoids, alkaloids, fatty acids, terpenoids, polysaccharides, coumarins, vitamins, sterols, proteins, and mineral compounds (Abdel Moneim et al., 2013; Kamal Uddin et al., 2014). Several types of flavonoid compounds were identified in P. oleracea, including kaempferol, myricetin, luteolin, apigenin, quercetin, genistein, and genistin (Zhu et al., 2010).

Purslane extract has various bioactivities such as antibacterial (Banerjee and Mukherjee, 2003), antioxidant (Arruda et al., 2004), antitumor (Azarifar et al., 2018) and anti-inflammation (Chan et al., 2000). The positive effects of P. oleracea extract in growth performance and microflora composition was confirmed in broilers by Zhao et al. (2013). Arruda et al. (2004) also suggested that dietary administration of purslane improve immune (both systemic and mucosal) parameters of gilthead seabream.

The main objective of this study was to evaluate the effects of different levels of purslane (Portulaca oleracea) extract (POE) on hematological parameters and immune responses of rainbow trout (Oncorhynchus mykiss) fry.

Materials and methods

Preparation of Portulaca oleracea extract

Purslane (Portulaca oleracea) was prepared in Perpin Company in Tehran and was identified and confirmed by botany section of Institute of Medicinal Plants (Tehran, Iran). Aerial parts of P. oleracea were collected and washed in sterile distilled water. Samples were separately shade-dried for 10 days till
weight constancy was achieved. Then they were powdered in an electric blender. The extract was prepared according to the method recommended by Askari et al. (2016). For preparation of hydro-ethanolic extract 100g of aerial parts of plant powder in was placed in 1000ml ethanol 80% for 72 hours. Then the solution was dried by rotary evaporator and the solvent was isolated. Finally crude extract was stored in dark bottle at 4ºC until use.

Fishing conditions
Six hundred rainbow trout (Oncorhynchus mykiss) fry with mean weigh of 3.3±0.1g were obtained from a local fish farm in Tonekabon city and transferred to the Coldwater Fishes Research Center (Tonekabon, Iran). The Fish were distributed randomly in 15 fiberglass tanks (300 liter) each with 40 fish. The water temperature was maintained at 14± 2ºC with a flow rate of 900Lh⁻¹. The pH was 7.5±0.3 and photoperiod was 12h light: 12h dark cycle. Fish acclimatized for 2 weeks before start of the experimental trial. During acclimatization procedure fish were fed with commercial diet (Faradaneh, Shahrekord, Iran) at a rate of 3-4% body weight, six times a day.

Experimental design
Fish were randomly distributed into 5 groups each containing 120 fish (40 fish per tank). The basal diet was mixed with obtained POE in an appropriate concentration, to get five different experimental diets: with 0 g (control group, T0), 0.5% (T1), 1% (T2), 1.5% (T3) and 2% (T4) of POE. The diets were allowed to dry and stored at 4°C until use. During this study fish were fed (3-4% of body weight) six times a day for 56 days.

Growth performance
The fish were deprived of food for 24 hours before weighing and sampling and the following parameters were measured at the end of feeding trial after 56 days. Growth parameters were calculated using below equations (Hushangi and Hosseini Shekarabi, 2018):

Specific growth rate (SGR, %)= \(\frac{\ln(W_2) - \ln(W_1)}{T}\) \times 100

Where: \(W_2=\)Final weight at time \(t_2\), \(W_1=\)Initial weight at time \(t_1\), and \(T=\)days of the experiment.

Feed conversion ratio (FCR) = \(\frac{\text{Feed consumption(g)}}{\text{Weight gain (g)}}\)

Survival rate (SR, %) = \(\frac{\text{Final number of fish}}{\text{Initial number of fish}}\) \times 100

Blood sampling
At the end of the feeding trial, on day 56, five fish were selected from each tank and anaesthetized with MS222 (100 mgL⁻¹). Then blood samples (2 mL) were obtained from the caudal vein of the fish. Blood samples were immediately divided into two parts: 1 mL was transferred to a tube containing anti-coagulant (heparin) for hematological analysis, while the other half was transferred to non-heparinized tubes for immunological analysis. Serum samples were obtained by blood
centrifugation (5000 g, 5 min) and stored at -80°C until use.

Hematological assay

Total red blood cells (RBC: 10^6 mm$^{-3}$) and white blood cells (WBC: 10^3 mm$^{-3}$) were enumerated in an improved Neubaeur hemocytometer using Hayem and Turck diluting fluids (Blaxhall and Daisley, 1973). Haematocrit (Ht%) was determined by standard microhematocrit (D-78532 Tuttlingen, Hettich, Germany) method after centrifugation at 14000g for 7 min and expressed as percentage (Houston, 1990). The haemoglobin (Hb, g dl$^{-1}$) level was determined according to cyanmethemoglobin procedure (Klontz, 1994). Also differential leukocyte cells were measured by preparing Giemsa stained smears. Blood smears were studied by light microscopy in order to make blood cell counts (Gao et al., 2007). Erythrocyte indices (MCV, MCH and MCHC) were calculated using the formulae mentioned by Klinger et al. (1996).

Immunological parameters

The concentration of total serum protein (TP) was determined using a Prestige 24i automated biochemical analyzer (Tokyo Boeki, Japan) and commercial kits (Pars Azmun, Iran) according to the manufacturers' instruction. Activity of lysozyme was measured according to turbidometric assay method described by Ellis (1990). Briefly a 50μL sera was added to 950μL of a suspension of Micrococcus luteus (0.2mg mL$^{-1}$ in a 0.05M sodium phosphate buffer (Sigma, USA, pH 6.2) and absorbance was measured at 520-560nm and 22°C after 30s and 180s by spectrophotometer (2100-VIS model Unico, USA).

Serum immunoglobulin (IgM) content was measured according to the method recommended by Adel et al. (2015) by using a microprotein determination method (C-690; Sigma), prior and after precipitating down the immunoglobulin molecules by means of a 12% solution of polyethylene glycol (Sigma). The difference in protein content was considered as IgM content.

Complementary activity (ACH50) was measured using DiaMetra kit (Diametra, Milan, Italy), based on manufacturer’s instructions to calculate the value of ACH50 of the samples as follows (Migliorini et al., 1985):

$$ACH50 \text{ (U mL}^{-1}) = \frac{1}{K} \times r \times \frac{1}{2}$$

Where: K is the amount of serum yielding 50% haemolysis, R is the reciprocal of serum dilution, and 1/2 is the correction factor. The assay was performed on a 1/2 scale of the original method.

Statistical analysis

The statistical analyses were carried out using SPSS software version no 20 (SPSS Inc., Chicago, IL, USA). The statistical analysis was done using one-way analysis of variance (ANOVA) followed by Duncan’s multiple range test. P-value of <0.05 was considered significant. All experiments were performed in three replicate.

Results

Growth performance
Based on the result, final weight and SGR were significantly increased in POE 1.5% and 2% treatments compared with other treatments, especially control group (p<0.05). Furthermore, the highest survival rate (%) was observed in POE 1.5% treatment. Regarding FCR values, control and 0.5% POE enriched diets showed similar values, while FCR value decreased in 1%, 1.5% and 2% POE enriched diets (Table 1).

Table 1: Growth performance and survival of rainbow trout fed with different levels of dietary Portulaca oleracea extract (POE). SGR: specific growth rate, FCR: fed conversion ratio, %SR: percentage survival rate. Values in a row with different superscripts show significant differences (p<0.05).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0 (control)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (g)</td>
<td>9.37±0.1<sup>a</sup></td>
<td>9.40±0.2<sup>a</sup></td>
<td>9.37±0.4<sup>a</sup></td>
<td>9.37±0.2<sup>a</sup></td>
<td>9.37±0.3<sup>a</sup></td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>47.65±1.16<sup>a</sup></td>
<td>52.42±0.9<sup>b</sup></td>
<td>55.76±1.1<sup>c</sup></td>
<td>57.42±0.9<sup>c</sup></td>
<td>55.50±1.3<sup>c</sup></td>
</tr>
<tr>
<td>SGR (%/day)</td>
<td>1.04±0.09<sup>a</sup></td>
<td>1.14±0.10<sup>b</sup></td>
<td>1.39±0.09<sup>c</sup></td>
<td>1.58±0.14<sup>d</sup></td>
<td>1.50±0.10<sup>d</sup></td>
</tr>
<tr>
<td>FCR</td>
<td>1.30±0.19<sup>a</sup></td>
<td>1.12±0.16<sup>b</sup></td>
<td>0.91±0.18<sup>c</sup></td>
<td>0.86±0.11<sup>c</sup></td>
<td>0.90±0.11<sup>c</sup></td>
</tr>
<tr>
<td>SR (%)</td>
<td>94.16±0.6<sup>b</sup></td>
<td>94.2±0.8<sup>b</sup></td>
<td>95.00±0.1<sup>b</sup></td>
<td>98.3±0.3<sup>b</sup></td>
<td>93.3±1.1<sup>b</sup></td>
</tr>
</tbody>
</table>

Hematological indices

The number of red blood cells significantly increased (p<0.05) in fish fed with the enriched diets with 1.5% and 2% of POE (Table 2). POE enriched diets (0.5 to 2%) significantly increased red blood cell count (RBC), white blood cell count (WBC), hematocrit (HCT), hemoglobin (HB) values, mean corpuscular hemoglobin (MCH), neutrophil and monocyte percentage, especially in T₃ group compared with the control group (p<0.05). Although there were no significant difference in eosinophil percentage and mean corpuscular hemoglobin concentration (MCHC), but lymphocyte percentage decreased significantly (p<0.05).

Table 2: Hematological indices of rainbow trout fed with different levels of dietary Portulaca oleracea extract (POE) for 8 weeks. *Data are presented as mean (or average form) ± S.E (n =9 fish from each group). Means in the same rows with different superscript show significantly different (P< 0.05).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0 (control)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (x10<sup>6</sup> cells mm<sup>-3</sup>)</td>
<td>1.0±0.03<sup>b</sup></td>
<td>1.1±0.04<sup>b</sup></td>
<td>1.1±0.02<sup>b</sup></td>
<td>1.6±0.05<sup>a</sup></td>
<td>1.5±0.06<sup>a</sup></td>
</tr>
<tr>
<td>WBC (x10<sup>6</sup> cells mm<sup>-3</sup>)</td>
<td>13.0±0.3<sup>b</sup></td>
<td>13.2±0.1<sup>b</sup></td>
<td>14.3±0.6<sup>a</sup></td>
<td>14.6±0.10<sup>a</sup></td>
<td>13.3±0.3<sup>b</sup></td>
</tr>
<tr>
<td>Lymphocyte (%)</td>
<td>76±1.2<sup>a</sup></td>
<td>74±0.9<sup>a</sup></td>
<td>71±0.8<sup>a</sup></td>
<td>72±0.8<sup>a</sup></td>
<td>74±0.8<sup>a</sup></td>
</tr>
<tr>
<td>Monocyte (%)</td>
<td>3.66±0.57<sup>b</sup></td>
<td>5.00±1.00<sup>b</sup></td>
<td>5.33±1.15<sup>a</sup></td>
<td>5.66±0.59<sup>a</sup></td>
<td>4.66±0.64<sup>a</sup></td>
</tr>
<tr>
<td>Eosinophil (%)</td>
<td>1±0.09<sup>a</sup></td>
<td>1.32±0.57<sup>a</sup></td>
<td>1.2±0.15<sup>a</sup></td>
<td>1.5 ±0.79<sup>a</sup></td>
<td>1±0.08<sup>a</sup></td>
</tr>
<tr>
<td>Neutrophil (%)</td>
<td>20.0±1.00<sup>b</sup></td>
<td>19.33±0.52<sup>b</sup></td>
<td>22.33±0.57<sup>b</sup></td>
<td>22.33±0.53<sup>a</sup></td>
<td>19.66±0.47<sup>b</sup></td>
</tr>
<tr>
<td>HTC (%)</td>
<td>32.0±1.00<sup>c</sup></td>
<td>35.4±0.60<sup>b</sup></td>
<td>40.0±1.20<sup>a</sup></td>
<td>36.0±1.29<sup>b</sup></td>
<td>35.0±1.00<sup>0</sup></td>
</tr>
<tr>
<td>Hb (g dl<sup>-1</sup>)</td>
<td>8.1±0.02<sup>b</sup></td>
<td>8.3 ±0.04<sup>b</sup></td>
<td>9.0 ±0.05<sup>a</sup></td>
<td>9.3 ±0.05<sup>a</sup></td>
<td>9.1±0.01<sup>a</sup></td>
</tr>
<tr>
<td>MCHC (g dl<sup>-1</sup>)</td>
<td>16.6±0.57<sup>a</sup></td>
<td>16.0±0.10<sup>a</sup></td>
<td>16±0.10<sup>a</sup></td>
<td>16.6±0.57<sup>a</sup></td>
<td>16.6±0.57<sup>a</sup></td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>7.16±0.35<sup>c</sup></td>
<td>8.16±0.14<sup>b</sup></td>
<td>9.45<sup>a</sup></td>
<td>9.23±0.68<sup>a</sup></td>
<td>9.33 ±0.47<sup>a</sup></td>
</tr>
<tr>
<td>MCV (Fl)</td>
<td>56.6±1.5<sup>a</sup></td>
<td>53.6±0.57<sup>b</sup></td>
<td>56.3 ±0.57<sup>a</sup></td>
<td>56.0±2.64<sup>a</sup></td>
<td>56.0±1.0<sup>a</sup></td>
</tr>
</tbody>
</table>
Immunological responses
At the end of the study total immunoglobulin, IgM, lysozyme, total protein levels and complementary activity (ACH$_{50}$) were increased in groups that received POE (1%, 1.5% and 2%), compared with the control group ($p<0.05$). After 56 days, immune indices significantly increased ($p<0.05$) in 1.5% POE group compared with other groups, especially control. Also the group received 1.5% POE had highest level of all measured immunological parameters (Table 3).

Table 3: Immune parameters of rainbow trout fed with different levels of dietary Portulaca oleracea extract (POE) after 8 weeks. Data are presented as mean ± S.E (n = 9 fish from each group). Means in the same rows with different superscript are significantly different ($P<0.05$).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dietary levels of POE (%)</th>
<th>0 (control)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total immunoglobulin (Ig, mg mL$^{-1}$)</td>
<td>13.96±1.36c</td>
<td>15.93±1.19b</td>
<td>15.06±1.07b</td>
<td>17.36±0.9a</td>
<td>16.2±0.55b</td>
<td></td>
</tr>
<tr>
<td>Immunoglobulin M (IgM, mg dl$^{-1}$)</td>
<td>13.0±1c</td>
<td>18.0±0.64b</td>
<td>19.3±0.21b</td>
<td>20.6±0.51a</td>
<td>20.6±0.51a</td>
<td></td>
</tr>
<tr>
<td>Complementary activity (ACH$_{50}$, U mL$^{-1}$)</td>
<td>114.3±3.2b</td>
<td>118.6±2.0b</td>
<td>123.3±1.3a</td>
<td>127±3.4a</td>
<td>115.3±2.1b</td>
<td></td>
</tr>
<tr>
<td>Total protein (g dl$^{-1}$)</td>
<td>2.55±0.22b</td>
<td>2.99±0.23ab</td>
<td>2.95±0.73ab</td>
<td>3.4±0.41a</td>
<td>3.03±0.17ab</td>
<td></td>
</tr>
<tr>
<td>Lysozyme (U ml$^{-1}$ min$^{-1}$)</td>
<td>43.0±2b</td>
<td>45.66±3.21b</td>
<td>46.66±3.21b</td>
<td>51.0±6a</td>
<td>42.0±3b</td>
<td></td>
</tr>
</tbody>
</table>

Discussion
The results of this study showed that dietary purslane (P. oleracea) extract have positive effects on growth performance as well as immune responses of rainbow trout fry. The results of growth performance showed that the highest final body weight and SGR were in fish groups fed with 1.5% and 2% POE diets, simultaneously. Okafor et al. (2014) reported that high growth performance in broiler chickens fed with dietary purslane extract could be explained due to high antioxidant capacity of POE. Moreover Zhao et al. (2013) reported that POE can lead to an increase population size of beneficial bacteria, such as lactic acid bacteria, in broiler chickens. It is proved that some medicinal herbs and their extracts have positive effect on fish growth indices (Immanuel et al., 2004, Sivaram et al., 2004, Mohammadi et al. 2018), while others consider them as immunostimulant instead (Dugenci et al., 2003; Bohlouli Oskoii et al., 2012).

Emerging some antimicrobial resistances in aquaculture industry is one of the major problems in intensive fish farming (Lazado et al., 2015). Therefore, medicinal herbs can be used as an effective alternative for antibiotics, chemicals, and other artificial therapeutics (Baser, 2008). Based on the present results total immunoglobulin, IgM, lysozyme, total protein levels and complementary activity (ACH$_{50}$) of fish fry were significantly increased in groups that received different levels of POE.
compared with the control group. Meanwhile, the fish that received 1.5% POE had the highest value of studied immunological parameters. Ruiz (2017) evaluated potential immunostimulant effect of purslane (P. oleracea) alone and/or in combination with probiotic Shewanella on gilthead seabream (Sparus aurata L.). She demonstrated that dietary administration of purslane (P. oleracea) for 30 days increased total immunoglobulin M levels in skin mucus which is consistent with our results. Moreover, interestingly IgM expression was up-regulated in head kidney after 15 days of diet administration. She concluded that purslane has the ability to modulate and improve several immune parameters, including systemic and mucosal immunity of seabream. In a similar study Allahmoradi et al. (2018) proved the immunomodulatory effects of P. oleracea extract by suppression of pro-inflammatory cytokines such as TNF-α and IL-6. Park et al. (2019) also showed that POE exerted has immunostimulatory effect in vivo and in vitro condition. It is proven that administration of some dietary herbal supplements, such as peppermint, Mentha piperita (Adel et al., 2015), fenugreek, Trigonella foenum graecum (Guardiola et al., 2017) and myrtle, Myrtus communis (Taee et al., 2017) were capable of improving the immune system of several fish species.

It could be mentioned that measurement of serum total proteins, especially globulin, is a good indicator to survey the status of immune system (Siwicki et al., 1994). After 56 days of feeding trial total protein level significantly increased in the 1.5% POE group compared with other groups ($p<0.05$). It is described that elevation of serum globulin following the use of herbal immunostimulants was justifiable by increasing total protein and albumin levels (Vasudeva et al., 2004).

Lysozyme is one of the components of the body's non-specific defense system, which is responsible for destroying pathogens by breaking down the glycosylated bonds of the peptidoglycan layer of the bacteria. In addition lysozyme is responsible for activating other important molecules of defense, including the complement system and phagocytic cells (Ellis, 1990). The level of lysozyme activity depends on environmental parameters (water temperature, pH, light period, season, and toxins) and intrinsic factors (size, age, sex, infections and stress) (Tukmechi and Bandboni, 2014). After 56 days of feeding trial, lysozyme activity increased in three groups (1%, 1.5% and 2%) which received POE compared with the control group. Similar results were observed on rainbow trout after feeding with feed containing Mentha piperita extract (Adel et al., 2016) and stinging nettle, Urtica dioica (Saeidi Asl et al., 2017). Studies conducted by researchers showed that the amount of lysozyme increased following the use of herbal extracts in fish diet. This increase was also significant in some cases depending on the species of fish and concentration of plant extract and type of extract used (Jeney et al., 2009).
In principle complement pathway is stimulated and activated by immunostimulants (Engstad et al., 1992). Among them performance of medicinal plants is proven to activate and stimulate complement activity. Results of present study are in line with the observations of other researchers, Awad and Austin (2010) showed that use of *Lupinus perennis* indica *Managifera Urtica* dioica, especially in concentrations of 2 and 1 percent in rainbow trout rations after 14 days increases complement activity significantly. Haghighi et al. (2018) showed that dietary inclusion of *O. vulgare* extract at a rate of 1% improve non-specific immune parameters (respiratory burst activity, phagocytic activity and serum lysozyme activity) of juvenile rainbow trout. Azizi et al. (2016) further demonstrated the effect of diet containing essential oil of thyme (*Thymus vulgaris*) on blood and biochemical parameters of rainbow trout serum. The essential oil of this plant increased both serum lysozyme and white blood cell count significantly. These properties were mainly attributed to flavonoids components. Iravan et al. (2003) believe that levels of vitamin in POE could increase the immune system.

Results of current study showed that POE enriched diets (0.5 to 2%) significantly increased blood parameters, such as RBC, WBC, HCT, and HB in T3 compared with the control group. Although no significant difference was observed in eosinophil percentage and MCHC, but lymphocyte percentage decreased significantly. In a similar study total WBC number and neutrophil percentages were significantly increased but lymphocyte percentages was decreased in received POE groups compared with the control groups in rat diets (Kaveh et al., 2017). These effects are related to phenolic acids, flavonoids, vitamin E, and vitamin C (Varmaghany et al., 2015) and also high content of n-3 fatty acids in POE (Okafor et al., 2014).

According to the present results it could be concluded that oral administration of POE up to 1.5% by feed in rainbow trout was effective and beneficial. However, further studies on specific mechanisms for immune modulation and disease resistance should be conducted to explore the feasibility of commercial application of POE in rainbow trout diet.

Acknowledgements

The scientific support of fisheries department staffs of Science and Research Branch, Islamic Azad University (Tehran, Iran) is gratefully acknowledged.

References

(Mentha piperita) extracts promote growth performance and increase the main humoral immune parameters (both at mucosal and systemic level) of Caspian brown trout (Salmo trutta caspius Kessler, 1877). *Fish and Shellfish Immunology*, 47, 623-629.

Adel, M., Pourgholam, R., Zorriezahra, J. and Ghiasi, M., 2016. Hemato-Immunological and biochemical parameters, skin antibacterial activity, and survival in rainbow trout (Oncorhynchus mykiss) following the diet supplemented with Mentha piperita against Yersinia ruckeri. *Fish and Shellfish Immunology*, 55, 267-273.

Bazari Moghaddam, S., Haghighi, M., Sharif Rohani, M., Hamidi, M. and Ghasemi, M., 2017. The effects of different levels of Aloe vera extract on some of the haematological and non-specific immune parameters in
the Siberian sturgeon (Acipenser baerii). Iranian Journal of Fisheries Sciences, 16(4), 1234-1247.

Haghighi, M. and Sharif Rohani, M., 2013. The effects of powdered ginger (Zingiber officinale) on the haematological and immunological parameters of rainbow trout (Oncorhynchus mykiss). Journal of Medicinal Plant and Herbal Therapy Research, 1, 8-12.

Lazado, C.C., Caipang, C.M.A. and Estante, E.G., 2015. Prospects of host-associated microorganisms in fish and penaeids as probiotics with
imunomodulatory functions. *Fish and Shellfish Immunology*, 45, 2-12.

Ruiz, M.C., 2017. Effects of purslane (*Portulaca oleracea* L.) and *Shewanella putrefaciens* probiotic enriched diet on gilthead seabream (*Sparus aurata* L.). Masters thesis in aquaculture, Faculty of Science and Technology, University of Algarve, Faro, Portugal, 75P.

and immunoresponse of juvenile greasy groupers (Epinephelus tauvina) fed with herbal antibacterial active principle supplemented diets against Vibrio harveyi infections.

Aquaculture, 237, 9-20.

Tae, H.M., Hajimoradloo, A., Hoseinifar, S.H. and Ahmadvand, H., 2017. Dietary myrtle (Myrtus communis L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings. Fish and Shellfish Immunology, 64, 320-324.

