Effects of *Chlorella vulgaris* on blood and immunological parameters of Caspian Sea salmon (*Salmo trutta caspius*) fry exposed to Viral Nervous Necrosis (VNN) virus

Saberi A.1; Zorriehzahra M.J.2*; Emadi H.1; Kakoolaki S.2, Fatemi S.M.R.1

Received: August 2015 Accepted: November 2015

Abstract:
In the present study, the effects of *Chlorella vulgaris* on blood and immunological parameters of Caspian salmon (*Salmo trutta caspius*) before and after exposure to Viral Nervous Necrosis (VNN) virus were examined. In this regard, four treatments in triplicate were chosen. Groups included one control and 3 treatments (T1, T2 and T3). Fish in control group, T1, T2 and T3 were fed diets supplemented with 0, 1×10⁸, 2×10⁷ and 3×10⁶ chlorella/450 g of food respectively, for sixty days. In addition, a virus supernatant was prepared from infected wild golden grey mullet (*Liza auratus*) and used for virus challenge of *S. trutta caspius*. Virus was injected intraperitoneally and blood samples were collected before and 14 days after the challenge. Immunological (IgM, C₃, C₄, total protein, respiratory burst, albumin and lysozyme) and changes in blood parameters (RBC, WBC, Htc, Hb, MCH, MCHC and MCV) were also measured. Results showed that *C. vulgaris* could act as a natural immunestimulant. Also, the alteration trend in hematological and immunological parameters showed that experimental fish could be considered to be resistant to VNN virus after exposure and fish treated with *C. vulgaris* were more resistant in comparison to those in the control group. The dose used in T1 (1×10⁸ chlorella/450 g food) was the most effective approach with significant differences.

Keywords: *Chlorella vulgaris*, Blood parameters, Immunological parameters, *Salmo trutta caspius*, Viral Nervous Necrosis virus

1-Dept. of Marine Biology, Science and Research Branch, Islamic Azad University, Hesarak, Tehran, I.R. Iran
2-Aquatic Animal health and Diseases Dept., Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEEO), Tehran, I.R. Iran
* Corresponding author's Email: zorrie@yoho.com
Introduction

Viral Nervous Necrosis (VNN) (Yoshikoshi and Inoue, 1990), also known as viral encephalopathy and retinopathy (VER; OIE, 2003), is caused by piscine nodaviruses. It was first described in 1990 in hatchery-reared Japanese parrotfish (Oplegnathus fasciatus) in Japan (Yoshikoshi and Inoue, 1990) and after that in more than 50 species around the world (Johnsen et al., 2002; Munday et al., 2002; Nakai et al., 2009; Crane and Hyatt, 2011) including wild golden grey mullet (Liza auratus) in the Caspian Sea in Iran (Zorriehzahra et al., 2005 & 2016). Affected juveniles and older fishes show a variety of erratic swimming behaviors such as spiral, whirling, belly-up at rest with inflation of swim bladder (Zorriehzahra, 2004). Histopathologically, the disease is characterized by severely extended necrosis and vacuolation of the central nervous system (brain, spinal cord) and retina, but sometimes fish in early larval stages lack tissue vacuolation (Munday et al., 2002). VNN is highly resistant to various environmental conditions and can survive for a long time in sea water (Arimoto et al., 1996). The disease is easily reproduced in healthy fish by cohabitation with infected fish, immersion in a virus suspension, or injection (Neguyen et al., 1996; Grotmol et al., 1999; Peducasse et al., 1999). Therefore occurrence of VNN in the Caspian Sea raised concerns about the infection of other fish in this region including Caspian Sea salmon (Salmo trutta caspius).

Caspian salmon is considered as an endangered species and has been listed as a protected species in the Iranian environmental regulations since August 1999 and is also included in the Red Data Books of Kazakhstan and Turkmenistan (Vera et al., 2010). Its natural populations have declined drastically in recent decades as a result of over-fishing, poaching, river pollution, destruction of natural spawning areas, and drought (Abdoli, 2000; Niksirat and Abdoli, 2009). It is anadromous and migrates up rivers to spawn. Captive breeding and conservation programs have been initiated to produce, restore, and protect populations (Sarvi et al., 2006; Jalali and Amiri, 2009). More than 900,000 fingerlings are produced annually through mixed milt fertilization of wild breeders and also from long-time hatchery breeders due to the decline of wild populations (Annual report of IFO, 2010). It takes 2 years before the fingerlings reach a weight of 15–20 g, corresponding to a length of 10–15 cm, which is considered suitable for releasing (Vera et al., 2010). It is important to know if Caspian Sea Salmon is at risk or if there is any approach to improve fish immune system against VNN. Furthermore, natural immunestimulants such as microalgae are always an appropriate option to test. Nowadays, these microscopic organisms are consumed as food supplements such as Chlorella vulgaris (Fradique et al., 2010). C. vulgaris is a spherical microscopic cell with a 2–10 μm diameter (Yamamoto et al., 2004). This microalga has a rapid
growth rate and is ideal for production because it is remarkably resistant against harsh conditions and invaders (Safi et al., 2014). It’s dry weight contains (42–58% of protein), (5–40% of lipid), and (12-55% of carbohydrate), pigments such as chlorophyll and carotenoid, vitamins and minerals which are used for different purposes like biofuels, human nutrition, wastewater treatment and animal feed (Safi et al., 2014). Consequently, the effect of C. vulgaris, as a natural immunestimulator was examined in Caspian Sea salmon exposed to VNN virus.

Materials and methods

Fish

A total of 800 Caspian Sea salmon fingerlings (mean individual initial weight of 8-10 g) were transferred from center of propagation and culture of Salmonids (Kelardasht, Iran) to the Caspian Sea Ecology Research Center (Sari, Iran). Fish were adapted to new conditions for a week and they were fed on a basal diet during acclimation.

Fish health examination

Prior to the experimental challenge, 40 fish specimen that were selected randomly from the mentioned population were screened for nodavirus by RT-PCR. All samples were negative and no VNN infection was observed (Gomez et al., 2004). The fish were acclimatised for one week and normal feeding behaviour was observed before the start of the challenge.

Microalgae

A pure culture of C. vulgaris was provided by the Caspian Sea Ecology Research Center. C. vulgaris cells was counted using a neubauer slide and light microscopy (Liu et al., 2007) and was added to fish food according to determined concentrations for treatments.

Treatments design

720 fish were divided into 12 groups, in the form of four treatments (one control group and three experimental groups) with three replicates, each containing 60 fish. Treatments were named control, T1, T2 and T3 and were fed on a diet supplemented with different concentrations of C. vulgaris.

Rearing condition

The mean water pH, dissolved oxygen (DO) and temperature were 7.5, 8 mg/L and 15°C respectively during the course of the experiment.

Food and feeding

Food was prepared once every ten days. To prepare the food, at first C. vulgaris cells were counted using a neubauer slide and were then added to ground food at a certain concentration for different treatments. The mixture of food and microalgae were dried in an oven. The control group was fed on the basal diet without C. vulgaris, while fish in T1, T2 and T3 were fed with the diets supplemented with 1×10^8, 2×10^7 and 3×10^6 chlorella/450 g food respectively. The feeding trial lasted for 60 days. Fish were feed two times a day (8:00 a.m, and 14:00 p.m) at a daily...
feeding rate of 8% of body weight in the first 2 weeks and then 6% and 4% of body weight in the second and final three weeks, respectively.

Supernatant preparation
A supernatant of the virus was prepared using brains and eyes of infected wild golden grey mullet. According to protocol provided by Kokawa et al. (2008), brain tissues were mixed with HBSS (Hanks balanced salt solution), then centrifuged at 1610 g for 20 min at 15°C and filtered through a 0.45 nm filter. The prepared supernatant was stored at -80°C for use to challenge with *S. trutta caspius*.

Virus challenge
Sixty days after the start of the feeding experiments, 10 fish were selected randomly from each treatment. In this study, the mentioned treatment groups kept at 18°C were challenged with an intraperitoneal injection (IP) and 1 group was kept as a control. The RGNNV used for the challenge was propagated in a cell line (SSN-1) derived from the striped snakehead *Channa striatus*. The Caspian salmon were challenged with 100 µL RGNNV infected SSN-1 cell culture supernatant (1.0 × 10⁷ TCID₅₀ mL⁻¹). The control groups were mock challenged with an injection of supernatant from uninfected SSN-1 cells (Húsgaro, et al., 2001). Each experimental group consisted of 60 fish. Virulence of mentioned supernatant was examined in a trial challenge in guppy fish (*Poecilia reticulata*), (Nazari, 2014).

Blood sampling and measurements
Blood samples were collected before and 14 days after the challenge. Fish were anaesthetized with clove extract (Farahi et al., 2011). Blood was collected from the caudal vein using 1mL sterile disposable plastic syringes. Blood was transferred into 1.5 mL heparinized tubes (Trittau, Germany) for hematological study and also in non-heparinized tubes for plasma biochemistry analysis. Heparinated blood samples were placed in a refrigerator at 4°C. Non-heparinized samples were immediately centrifuged at 4°C at 1500 ×g for 5 minutes. Plasma was collected with a micropipette and stored at −80°C until analysis. Blood parameters were measured which included Red Blood Cells (RBC), White Blood Cells (WBC) (Torfi Moazenzadeh et al., 2015), Haematocrit (Hct; %) (Barros et al., 2002), Haemoglobin (Hb; gL⁻¹) (Drabkin, 1945), MCH (pg/cell), Mean Corpuscular Volume (MCV) (fL) and Mean corpuscular hemoglobin concentration (MCHC) (g/dL) (Dacie and Lewis, 2001). Immune parameters were analysed using an autoanalyser (Mindray BS-200, China), with commercial clinical investigation kits (Pars Azmoon Kit, Tehran, Iran). Measured immunological parameters included total protein (TP), albumin (ALB), IgM, C₃, C₄, respiratory burst and lysozyme (Torfi Moazenzadeh et al., 2015).

Statistical analysis
The mean and standard error of three replicates and control were reported for
all parameters at the level of $\alpha=0.05$. Paired sample t-test was used to determine the effect of each concentration of *C. vulgaris* on mean values of hematological and serum parameters in comparison to the control groups before and after virus exposure. The Pearson ratio was used to analyze the correlation of whole parameters together. Pearson's correlation coefficient was used to determine an association between the hematological and immunological parameters, pairwise. All statistical analyses were performed using the SPSS ver. 18.0.

Results

The results of measured hematological and immunological parameters and paired comparisons of their alteration trends before and after exposure to VNN virus are presented in Tables 1 and 2 and also in Figs. 1-4. No significant differences were observed in amount of Hct, Hb, RBC, WBC, MCHC, respiratory burst, C3, albumin (ALB), total protein (TP) and lysozyme in control groups and all experimental groups before the virus challenge ($p>0.05$) (Table 1). The highest amount of MCH was observed in T1 but it showed no significant differences with control groups. Amount of IgM in T1 was significantly more than other treatments. In addition, the amount of C4 in T1, T2 and T3 were significantly more than in the control group ($p<0.05$), yet no significant differences were observed between those treatments ($p>0.05$).

Results of measured parameters after VNN virus exposure showed that MCV in T1 and T2 were significantly more than T3 and control group ($p<0.05$). The amount of MCHC and IgM in T1, T2 and T3 were significantly less than control group ($p<0.05$), yet no significant differences were observed between those treatments ($p>0.05$). Also, C3 in control group was significantly more than experimental groups ($p<0.05$). In addition, significant differences were observed in C3 of all experimental groups, so that C3 increased follow by increasing the amount of *C. vulgaris* used in treatments.
Table 1: The effect of different concentrations of *Chlorella vulgaris* on some hematological parameters of Caspian salmon before and after VNN virus exposure (*n*=36) and paired test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (Before)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hct (%)</td>
<td>0.05±0.01</td>
<td>0.01±0.01</td>
<td>0.23±0.01</td>
<td>0.62±0.14</td>
</tr>
<tr>
<td>Hb (gL⁻¹)</td>
<td>6.93±0.25</td>
<td>6.83±0.30</td>
<td>6.56±0.32</td>
<td>6.68±0.30</td>
</tr>
<tr>
<td>RBC (×10⁶ µL)</td>
<td>0.45±0.004</td>
<td>0.96±0.05</td>
<td>0.90±0.075</td>
<td>0.83±0.063</td>
</tr>
<tr>
<td>MCHC* (gL⁻¹)</td>
<td>312±5.59</td>
<td>306±11.47</td>
<td>345±3.40</td>
<td>341±11.14</td>
</tr>
<tr>
<td>MCH* (pg cell⁻¹)</td>
<td>81.41±2.58</td>
<td>71.18±1.12</td>
<td>73.88±3.59</td>
<td>81.03±2.63</td>
</tr>
<tr>
<td>MCHC* (gL⁻¹)</td>
<td>19.05±0.29</td>
<td>17.78±0.29</td>
<td>18.46±0.44</td>
<td>18.65±0.32</td>
</tr>
</tbody>
</table>

*In each row, shows significant difference at least between 2 groups, before or after VNN virus exposure or both of them (p<0.05). In each row, different superscripts show significant difference (α=0.05). Sig.s less than 0.05 (p<0.05), in paired compare between a parameter before and after VNN virus exposure shows significant difference. *r* shows Pearson correlation of a parameter before and after VNN virus exposure.

Table 2: The effect of different concentrations of *Chlorella vulgaris* on some immunological parameters of Caspian salmon before and after VNN virus exposure (*n*=36) and paired test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (Before)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Burst</td>
<td>1482±168</td>
<td>1279±91</td>
<td>1491±119</td>
<td>1314±65</td>
</tr>
<tr>
<td>IgM* (mg L⁻¹)</td>
<td>107.26±10.2</td>
<td>129.36±9.45</td>
<td>142.23±11.45</td>
<td>170.46±5.90</td>
</tr>
</tbody>
</table>

*In each row, shows significant difference at least between 2 groups, before or after VNN virus exposure or both of them (p<0.05). In each row, different superscripts show significant difference (α=0.05). Sig.s less than 0.05 (p<0.05), in paired compare between a parameter before and after VNN virus exposure shows significant difference. *r* shows Pearson correlation of a parameter before and after VNN virus exposure.
Continued Table 2:

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>29.95±3.32</td>
<td>29.60±1.45</td>
<td>35.35±3.42</td>
<td>28.81±2.57</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>50.40±3.95</td>
<td>20.93±1.34</td>
<td>27.55±1.38</td>
<td>40.81±4.22</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.002</td>
<td>0.008</td>
<td>0.068</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.538</td>
<td>-0.059</td>
<td>0.244</td>
<td>0.710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>19.51±1.77</td>
<td>24.50±1.06</td>
<td>29.25±4.34</td>
<td>34.88±5.29</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>17.91±1.80</td>
<td>17.23±1.85</td>
<td>16.46±1.19</td>
<td>16.28±1.65</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.558</td>
<td>0.015</td>
<td>0.028</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-0.013</td>
<td>0.129</td>
<td>0.639</td>
<td>-0.179</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>2.13±0.21</td>
<td>1.98±0.07</td>
<td>1.90±0.06</td>
<td>2.23±0.15</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>2.84±0.27</td>
<td>1.95±0.22</td>
<td>2.08±0.10</td>
<td>2.68±0.21</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.135</td>
<td>0.842</td>
<td>0.150</td>
<td>0.108</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.704</td>
<td>0.945</td>
<td>0.241</td>
<td>0.285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>3.63±0.19</td>
<td>3.95±0.45</td>
<td>3.66±0.12</td>
<td>3.86±0.26</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>3.88±0.37</td>
<td>3.03±0.10</td>
<td>3.41±0.21</td>
<td>4.33±0.60</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.432</td>
<td>0.101</td>
<td>0.269</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.620</td>
<td>0.114</td>
<td>0.389</td>
<td>0.594</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>1.23±0.15</td>
<td>1.61±0.21</td>
<td>1.31±0.37</td>
<td>1.24±0.17</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>1.70±0.15</td>
<td>1.59±0.49</td>
<td>2.18±0.58</td>
<td>3.18±0.82</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.033</td>
<td>0.979</td>
<td>0.143</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.490</td>
<td>-0.358</td>
<td>0.534</td>
<td>-0.096</td>
<td></td>
</tr>
</tbody>
</table>

*In each row, shows significant difference at least between 2 groups, before or after VNN virus exposure or both of them ($p<0.05$). In each row, different superscripts show significant difference ($\alpha = 0.05$). Sig. s less than 0.05 ($p<0.05$), in paired compare between a parameter before and after VNN virus exposure shows significant difference. "r" shows Pearson correlation of a parameter before and after VNN virus exposure.

Figure 1: Effect of different concentrations of *Chlorella vulgaris* on blood parameters before exposure to VNN virus.
Figure 2: Effect of different concentrations of *Chlorella vulgaris* on blood parameters after exposure to VNN virus.

Figure 3: Effect of different concentrations of *Chlorella vulgaris* on immunological parameters before exposure to VNN virus.
Discussion
Research in fish immunostimulants is developing and many of these agents are currently in use in the aquaculture industry. Immunostimulants such as synthetic chemicals or natural ingredient like microalgae, increase resistance to infectious diseases, not by enhancing specific immune responses, but by enhancing non-specific immune defence mechanisms. Use of these immunostimulants is an effective means of increasing the immunocompetency and disease resistance of fish (Sakai, 1999; Klesius et al., 2001; Subasinghe, 2009). Results of the present study showed that C. vulgaris could have acted as a natural immunestimulator in Caspian salmon. Different studies have been shown that microalgae such as Spirulina platensis (Ibrahim et al., 2013), Nannochloropsis oculata (Yanuhar et al., 2011), C. minutissima (Katharios et al., 2005) and also C. vulgaris (Xu et al., 2014) are effective agents in improving fish immune system. Crude polysaccharide extracts from the microalgae Chlorella stigmatophora (Chlorophycae) and Phaeodactylum tricornutum (Bacillariophycae) have shown strong anti-inflammatory and immunomodulatory activities both in vivo and in vitro (Guzman et al., 2003).

No mortality or disease symptoms were observed in fish 14 days after they were challenged with VNN virus which indicates that Caspian salmon (S. trutta caspius) could be considered as a resistant species to VNN virus or fish need longer time to show probable disease symptoms. Results of cell culture, IFAT and RT-PCR of challenged fish were also negative (Data will be revealed in the next article)
longer references in Paralichthys cm. specific

Saberi et al., Effects of Chlorella vulgaris on blood and immunological parameters of Caspian...

soon) that confirmed S. trutta caspious is resistant to VNN virus.

However, the most effective concentration of C. vulgaris to improve fish immune system was observed in T1 (1x10^8), so that IgM and C4 in C. vulgaris treated fish were significantly more than that in the control group and IgM in T1 was significantly more than that in other groups.

C. vulgaris had a definite influence on the fish immune system in that it increased in all experimental groups even in T3 with the lowest C. vulgaris concentration. Paired comparison of IgM levels before and after the challenge in treatments showed that the factor decreased after challenge in fish treated with C. vulgaris but increased in the control group. It seems that C. vulgaris treated fish were prepared against VNN virus in terms of IgM and the challenge caused IgM consumption, yet the humoral system was not active in the control group. IgM was produced just after the challenge and it would be consumed in a longer time (longer than the duration of the experiment).

In teleost fish, evaluating the complement system as a humoral component is an essential part of the innate immune system. A specific immunoglobulin or IgM is triggered by the binding of an antibody to the cell surface but can also be activated by acute phase proteins such as ligand-bound CRP or directly by viruses, bacteria and virus-infected cells (Balfry and Higgs, 2001; Aoki et al., 2008).

C4 is a Non-specific humoral molecule and is a part of complement system that has an effective role in the fish immune system (Kum and Sekkin, 2011).

Results showed that C. vulgaris has no effect on blood parameters before VNN virus exposure; however it seems that higher the amounts of MCV in T1 and T2 after virus exposure is related to consuming more C. vulgaris before the challenge. In addition, MCHC increased in all treatments after exposure in that significant difference were observed between the control group and other experimental treatments but significant alteration of MCHC before and after the challenge were only observed in the control group and T3 that were treated with no and a low concentration of C. vulgaris, respectively. It seems that consuming higher concentrations of C. vulgaris helps in reducing changes in MCV and MCHC after virus exposure.

C. vulgaris has no significant effect on Hct and Hb of fish before the challenge. Similarly, spirulina causes no significant differences in Hct and Hb levels in olive flounder (Paralichthys olivaceus) (Kim et al., 2013). Paired test results showed that higher concentrations of microalgae (concentration used in T1 and T2) cause lesser impact of virus on Hct and no significant differences were observed in T1 and T2 Hct levels not only before but also, after virus exposure. In addition, VNN virus affected Hct levels in fish in T3 and in the control group which received less concentration or no C. vulgaris. Significant differences in Hb levels were only observed in T3 suggesting no effect of C. vulgaris on Hb during the experiment.
In addition, fish start showing resistance to the virus after virus injection in that significant increase was observed in the respiratory burst trend before and after the challenge in all treatments that is in agreement with the results of studies by Kim et al., (2013), Watanuki et al. (2006) and Abdel-Tawwab and Ahmad (2009). They found spirillina causes significantly higher respiratory burst activity in olive flounder (P. olivaceus), common carp (Cyprinus carpio), and Nile tilapia (Oreochromis niloticus), respectively.

Also, changes in other immune parameters such as C₄, C₃, and IgM showed that fish had begun to show resistance against VNN virus. The alteration trend in C₃ and following that in MCV and IgM showed that fish in T₁ were more ready than other treatments to deal with the virus. If fish blood and immunological parameters had been studied for a longer time, it would have been possible to see significant increase in WBC, TP and ALB that would suggest that C. vulgaris concentration in T₁ had the best effects against VNN virus.

It seems that C₃ and lysozyme alteration trends were not caused by the virus but may have been accidental.

Lysozyme activity was not changed by C. vulgaris supplementation. Paired tests showed that lysozyme in T₁ and in the control group increased significantly and that it was accidental and not due to C. vulgaris or the virus effect. On the contrary, Kim et al. (2013) suggested spirulina’s influence on lysozyme activity of olive flounder (P. olivaceus) and Promya and Chitmanat (2011) showed a significant increase in serum lysozyme activity in African sharptooth catfish (Clarias gariepinus) fed 3% or 5% dietary spirulina. Differences observed in the present study and other mentioned studies might depend on fish species, nutrition, environmental condition, age (Adams et al., 2004; Adams and Thompson, 2008) and many other factors that were dissimilar in special experimental condition.

Immune systems affected by drugs such as immunostimulants, should act through the enhancement of the innate immune response (Austin and Brunt, 2009; Nayak, 2010) that was also observed in many measured factors in the present study.

The antiviral effect of microalgae is due to the existence of sulfated polysaccharides, which can inhibit viral infection and/or replicate (Fabregas et al., 1999). Some functions of immune parameters like C4, IgM, lysozym, etc include promoted binding of microbes to phagocytes, promoted inflammation at the complement activation, that cause osmotic lysis or apoptotic death. Also, change in the surface charge of microbes to facilitate phagocytosis, and haemolytic and antivirucidal effects (Kum and Sekkin, 2011) get improved due to the use of natural immunestimolants such as C.vulgaris.

In conclusion, by experimentation done in this study we can suggest that Caspian salmon should be considered as resistant to VNN virus. Also we can not deny the fact that since the exposure time was only 14 days in the present study, it might be possible that the virus
might be able to cause symptoms in this fish in longer periods of time. However, most of the studies about the possible outbreak of VNN in challenged fishes were done for longer than 14 days. For example after 20 days in Sevenband grouper (*Epinephelus septemfasciatus*) (Tanaka *et al*., 1998) and after 30 days in guppy, zebra, oscar, and gold fish (Zorriehzahra *et al*., 2013). However other than time, there were other differences in these experiments such as fish species, mode of challenge, virus titration and water temperature that should be considered. However Lopez-Jimena *et al* (2012) focused on time and sampled European seabass (*Dicentrarchus labrax*) on days 3, 10, 17, 24, 31 and also 2 months after the challenge. Although VNN was previously reported in European seabass (Breton *et al*., 1997), they reported antigenic proteins detected by the use of immunohistochemistry and also vacuolation in brains and retina tissues in the fish 3 days after the challenge.

Furthermore, it is important to emphasize that the trial infection was performed at a very low temperature (15°C), and according to recommendation of other researchers challenge trials at higher temperature should be recommendable before making final conclusions (A. Toffan, personal communication, May 18, 2015). On the other hand, the experimental species Caspian salmon (*S. trutta caspius*) is a coldwater species and the optimum temperature for them would be 10-16°C (trial temperature was 15°C). When water temperature reaches above 18 °C, some physiological disorders may happen leading to undesirable mortality that would occur naturally. In fact, high temperatures more than 20-22°C would be hazardous for them. Finally, according to the obtained results in this study, and the lack of findings from similar examinations in Caspian salmon, based on the effects of time and rearing temperature, which was set at 15°C, it may be concluded that the Viral Nervous Necrosis Virus (VNNV) cannot cause morbidity and mortality in Caspian Salmon under these conditions. However, we cannot definitely claim that Caspian salmon is a resistant species to VNN at higher degrees of temperature or longer time of exposure. Therefore, it is suggested to consider the effect of longer time on morbidity and mortality of VNN in challenged *S. trutta caspius* in future studies.

Acknowledgments

We would like to express our gratitude to the head and staff of Caspian Sea Ecology Research Center in Mazandaran Province for their technical and laboratory assistance.

References

Zorriehzahra, M.E.J., Ghasemi, M., Mehrabi, M.R., Kakoolaki, Sh., Radkhah, K., Nazari, A., Rohani, M.S. and Haghighi Karsidani, S., 2013. The investigation on histopathological changes of four ornamental fish species due to expose of causative virus of viral nervous necrosis (VNN) disease.16th international conference on diseases of fish and shellfish, 2-6 September 2013, At Tampere, Finland.