Potentiality of *Moringa oleifera* aqueous extract as a growth modulator and antistress in acute hypoxic Nile tilapia *Oreochromis niloticus*

Shourbela R.M.¹; El-Hawarry W.N.^{1*}; Abd El-Latif A.M.²; Abo-Kora S.Y.³

Received: April 2017

Accepted: December 2017

Abstract

This study aims to get a comprehensive evaluation of the growth promoting effects and the hypoxic stress relief potentiality of *Moringa oleifera* aqueous extracts. *Oreochromis niloticus* fingerlings were arbitrarily allocated into five duplicated fish groups (30 fish tank⁻¹). The fish groups were labeled according to the *M. oleifera* aqueous extract dietary inclusion level ($G_1:G_5$). MOAE had fundamentally promoted tilapia growth. Serum total protein levels were considerably higher in the *M. oleifera* fed fish, whereas the levels of liver enzymes diminished significantly in G_5 fish. Additionally, the dietary *M. oleifera* resulted in a noticeable hypoglycemic effect together with a pronounced decline in the antioxidant activities. The use of *M. oleifera* supplemented diet decreased the hypoxia-related stress as conveyed by the gradual descent in the serum cortisol levels of the hypoxic-stressed tilapia. This study proposes the potentiality of *M. oleifera* aqueous extract as a growth promoter, antistress and antioxidants. It also validates its safe application in commercial tilapia culture. Future study is required to comprehend the influence of this plant extract in relieving chronic stress and its possible toxic effect as well. Feasibility study for its commercial usage is required too.

Keywords: Plant extracts, *Moringa oleifera*, *Oreochromis niloticus*, Growth, Antioxidant activity, Hypoxic stress.

¹⁻Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Rosetta line, Egypt.

²⁻Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha University, Egypt.

³⁻Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Egypt.

^{*}Corresponding author's Email: waleed.elhawarry@alexu.edu.eg

Introduction

Tilapia is a popular aquatic species being cultured worldwide. In 2012, the world tilapia production had boomed to reach 4.5 MT (FAO, 2014) and is anticipated to increase exponentially over the coming years. Indeed, Tilapia intensification is an essential requisite to cover the existent necessity for fish protein. The generated stress and limited disease control associated with intensive aquaculture have made sound management and biosecurity critical challenges to aquaculture (Kautsky et al., 2000; Schreck, 2000; Moss et al., 2012). As an important water quality criterion; Dissolved oxygen (DO) may represent a significant constraint for successful aquaculture. For instance oxygen depletion may occur under different culture conditions especially in intensive culture systems prompting hypoxia. Hypoxia has many fish adversative consequences on cultured fish. It can antagonistically affect varied kind of physiological and biochemical activities including growth (Wang et al., 2009) and hematological indices along with stress response stimulation (Simi et al., 2016).

Antimicrobials and other chemicals are regularly administered as additives in fish diets or water baths as growth promoters, prophylactics or therapeutants (Bulfon *et al.*, 2015). Their continuous application resulted in various adversarial effects for the environment and health safety (Menz *et al.*, 2015). Accordingly, numerous countries have rigid regulations that limit their application in aquaculture. In this concern, a new worldwide trend had evolved regarding the consumer perceptions as influenced by safety and quality of the animal crop. In this manner, imperative needs to search different choices to antimicrobials were of primary concerns. Such choices would guarantee better growth performance and pathogens control and afterward, would polish the sustainable fish production under intensive culture systems. Plants are the warehouses of safe and inexpensive chemicals. Natural plants may represent better substitutes for antimicrobials in aquaculture as they impound various actions like growth enhancement, antimicrobial and antioxidant activities together with their antistress potentialities (Reverter et al., 2014). Indeed, this is related to the several active constituents they have, such as pure volatile oils, alkaloids, phenolics, terpenoids, saponins, flavonoids and numerous other compounds (Anwar 2007;et al., Chakraborty 2011: and Hancz, Huyghebaert et al., 2011).

The drumstick Moringa tree, oleifera, is angiosperm plant demonstrating varied and valuable impacts, in accord to the plant part and inception. Different portions of this plant have been used all through history for nourishing and healing its importance (Mbikay, 2012; Leone et al., 2015). The seeds, for instance, possess potential antimicrobial action against certain pathogens. They also can be utilized for water cleansing since they contain particular proteins with coagulation properties (Nikkon et al., 2003; Suarez al.. 2003). et Nevertheless, the information available about its influences on the immune antioxidant activity and response, growth of various fish species including Nile tilapia Oreochromis niloticus. To the best of our information, there is no data in the literature on the influence of dietary M. oleifera, in evoking a better response to stressful culture fish conditions, such as hypoxia. Therefore; this study aims to get a comprehensive evaluation of growth promoting effect М. *oleifera* aqueous of extracts (MOAE) on O. niloticus fingerlings. In addition, the MOAE influences on the enzymes antioxidant activities and some serum biochemical indices of acutely hypoxic Nile tilapia fingerlings.

Materials and methods

Fish and rearing

Apparently, healthy monosex tilapia fingerlings obtained from a private fish Kafr hatcherv at El Sheikh Governorate, Egypt. The fish were transferred into polyethylene bags filled with oxygen to the Lab of Fish Breeding and production, Vet. Med, Alex. University, Egypt. Fingerlings were firstly acclimated in rectangular white plastic tanks (500 L capacity) supplied with 300 L of underground freshwater and equipped with individual biofilters along with constant air supply. During the adaptation period, fish were fed twice daily (09:00; 14:00) with a diet previously formulated to obtain a 30% crude protein.

Preparation of aqueous extract of M. oleifera leaves

Mature leaves of M. oleifera were

selected and gathered from one area (Abu-hammad, Sharkia, Egypt). The air dried leaves were crushed using mortar and pestle. The Bioactive substances of M. oleifera leaves were extracted using infusion technique. The leaves were immersed in distilled water for 24 h using 1:2 ratios (weight /volume) (Fernandez, 1990). After that, a suction apparatus and doubled Whatman no. 1 filter paper used to spate the debris and filtrate. Then a concentrated filtrate was obtained through a vacuum rotary evaporator (Buchi R-110 Rotavapor, Switzerland) at (40°C) the dry extract kept frozen at 0°C.

Diet preparation

Five diets were prepared (Table 1), include the control one which was non-*M. oleifera* supplemented diet and the other four ones were supplemented with graded levels (50, 100, 200 and 400 mg Kg⁻¹ diet) of *M. oleifera* watery extract. Then, tap water was added to each until a firm paste was acquired. Each doughy diet was then separately passed through a mincer with a 16 mm die, the resulted strands were gently broken into pellets, air dried at ambient temperature for two days and finally kept at 4°C in plastic bags till need.

Experimental setup and fish management

After adaptation periods, fish with an average body weight of 4.48 ± 0.22 g and average body length of 6.27 ± 0.19 cm were arbitrarily allocated into five replicated fish groups (two replicates group⁻¹). The fish groups were differentiated according to the MOAE

dietary inclusion level. They were labeled as G_1 ; fed a control diet (0% MOAE kg⁻¹ feed), G_2 ; fed 50 mg MOAE kg⁻¹ feed, G_3 ; fed 100 mg MOAE kg⁻¹ feed, G_4 was fed 200 mg MOAE kg⁻¹ feed and G_5 ; fed 400 mg MOAE kg⁻¹ feed. The stocking density was maintained at 30 fish tank⁻¹. One day after stocking, each fish group was hand-fed with its corresponding diet. The trial was continued for 60 days, with a feeding frequency two times per day (09:00; 14:00), six days a week until apparent satiation. Likewise, the adaptation period, the water quality of each tank was similarly preserved and managed throughout the experimental period. Moreover, 1/3 of the water in all tanks was replaced each other day. Accordingly, the tanks water quality was within the permissible limits (temperature; 26 ± 0.42 °C, pH; 7.87±0.36, and DO; 6.94 ± 0.56 mg L⁻¹).

diet (g 100 g ⁻¹ dry matter).	
Feed ingredients	Proportion
Fish meal (60%)	16
Soybean meal (47%)	27.5
Yellow corn	27
Rice bran	13
Wheat bran	15
Dicalcium phoshate	1
Methionin	0.05
Cholin chloride	0.05
Vitamin and mineral premix*	0.2
Binder	0.2
Total	100
Composition	Proximate analysis
Dry matter	88.09
Crude protein	29.33
Crude Fiber	5.58
Ash	8.15

Table 1: Composition and proximate analysis of the basal diet (g 100 g⁻¹ dry matter).

*Vitamin mineral premic (Technomix) (quantity per 1 kg). Vitamin premix: Vitamin-A: 12,000,000 IU; Vitamin-D3: 2,000,000 IU; Vitamin-E: 10,000 mg; Vitamin-K₃: 2,000 mg; Vitamin-B₁: 1,000 mg; Vitamin-B₂: 5,000 mg; Vitamin-B₆: 15,000 mg; Vitamin-B₁₂: 1.0 mg; Biotin: 50 mg; Pantothenate: 10,000 mg; Nicotinic acid: 30,000 mg; Folic acid: 1,000 mg. Mineral premix (mg per 2 kg): FeSO4: 30,000; ZnSO4: 50,000; MnSO4: 60,000; CuSO4: 10,000; calcium iodine: 1,000; cobalt: 100; choline: 250,000.

Iranian Journal of Fisheries Sciences 19(1) 2020

Fish growth and survival

The body weight and the total length of all experimental fish groups were noted 24 h after the end of the feeding trial. The performance data and the survival rate (%) were appraised;

• Weight gain (g)= W_2 - W_1

• Average daily gain (g day⁻¹)= $(W_2-W_1)/T$

• Specific growth rate (% day⁻¹)= $[\log e (W_2)-\log e (W_1)/T] \times 100$

• Condition factor $(K)=(W/L^3)\times 100$

Where; W_2 is final weight (g), W_1 is initial weight (g), T is the trial period (days), L is total length (cm).

Hepatosomatic index (%)=[liver weight/W]×100

Survival rate (%)=[Number of survived fish / initial number of fish]×100

Biochemical parameters

To evaluate some of the biochemical parameters, blood samples (three anesthetized fish tank⁻¹) were collected from either the heart or the caudal vessels 24 h after the last diet. Hypodermic syringes were used to get the blood samples which were then transmitted to Wassermann tubes. The serum samples were obtained through allowing blood clotting at room temperature for 45 min then centrifuged 3000 (Hettich Centrifuge, at rpm Tuttlingen, Germany) for 15 minutes (Burnett et al., 2011). The sera were pipetted into Eppendorf tubes, labeled and hold on in deep freeze at -20 °C for further biochemical analysis.

Biochemical indices such as total protein and albumin were measured in

step with Lowry *et al.* (1951) and Drupt *et al.*(1974). Immunoglobulin M (IgM) was assessed via spectrophotometric examination of fish serum. Also, the hepatic transaminase activities (ALT and AST) were tested in serum based on the method displayed by Reitman and Frankel (1957). Whereas serum urea levels were analyzed according to Fawcett and Scott (1960) and creatinine levels were estimated after Husdan and Raporpot (1968). Serum glucose levels were evaluated by the methodology of Cooper and Mc Daniel (1970).

Antioxidant enzymes assay

From each replicates three randomly selected fish were seined and transferred directly into an anesthetic containing water. Each fish was then dissected and the liver was extracted, cleaned by 0.9% NaCl solution. After that, each liver was homogenized in a cooled phosphate buffer saline (pH 7.2 at a ratio 1: 10) using electrohomogenizer (Heidolph, Germany). The homogenate was then centrifuged $(13,000 \times g \text{ at } 4^{\circ}C \text{ for } 10 \text{ min})$ and the supernatant was pipetted and stored at -80°C until analysis. The antioxidant enzymes assay comprised; superoxide dismutase (SOD), Glutathione peroxidase (GPX), (Glucose 6phosphate dehydrogenase (G6PDH) and Nitric oxide (NO) which were analysed according to Paglia and Valentine (1967), Nishikimi et al. (1972), Bautista et al. (1988) and Van Bezooijen et al. (1998); respectively.

Acute hypoxic stress

Toward the completion of this trial,

tilapia from various treated tanks were exposed to acute hypoxic stress. The tilapia fish were retained out of their tank and subjected to atmospheric air for three minutes. Investigation of cortisol profile was carried out through taking blood samples (5 fish treatment⁻¹). Thirty minutes and again two hours later from the same fish were sourced out of water for blood sampling to detect the post-hypoxia cortisol profile (Knobil, 1980).

Statistical analysis

One-way ANOVA was used to statistically analyze the data recorded for the differently treated fish groups under SAS (2008). Duncan's multiple range tests applied as well to detect any anticipated significant differences between treated fish groups at a significant level of 95%.

Results

Feeding MOAE supplemented diet had significantly enhanced tilapia growth and survivability in comparison to the MOAE non-supplemented one (Table 2). The FBW, WG, ADG, SGR and FL had significantly increased (p < 0.05) in an ascending trend as the dietary inclusion level of MOAE increased from 50 mg kg⁻¹ diet to 400 mg kg⁻¹ diet. The condition factor was not significantly (p>0.05) differed by the MOAE dietary supplementation. However. higher estimates were recorded for the MOAE received fish. The MOAE supplemented diet expressively (p < 0.05) increased the HSI, where the highest indices were assessed at 400 mg MOAE kg⁻¹ diet inclusion level. Fish fed MOAE supplemented ration expressed significantly (*p*<0.05) better FCR values. Additionally, the lowest FCR values were achieved by those fish fed diets in 100 and 400 mg MOAE kg⁻¹, respectively. The Survival percentage noted in this study was not (p>0.05)affected by the MOAE diet supplementation.

Dietary MOAE significantly (p < 0.05) influenced the serum TP level of O. niloticus fish (Table 3). The addition of 400 mg MOAE kg⁻¹ diet resulted in an expressively higher serum TP level than the levels identified in the other treated fish However, still groups. comparable were observed between the results control MOAE non-supplemented group and the other treated fish groups (G2, G3, and G4). Meanwhile, albumin levels were not considerably (p>0.05)influenced by MOAE dietary supplementation. Additionally, IgM values noticeably increased (p < 0.05) in the fish supplemented with 200 mg MOAE kg⁻¹ diet. Liver and kidneys enzymes are demonstrated in Table 3; the G₅ exposed a noteworthy (p < 0.05) drop in liver enzymes. The recorded urea levels diminished significantly in the fish fed 100 mg MOAE kg⁻¹ diet. However, the serum creatinine levels did not elucidate any substantial differences (p>0.05) as an influence to dietary MOAE supplementation. MOAE considerably reduced the glucose levels. (p < 0.05) in the sera of the MOAE supplemented fish (Table 3). Both G4 (200 mg kg⁻¹) and G1 (control one) displayed the highest

serum glucose concentrations.

	Treatments								
	Dietary <i>M. oleifera</i> extract mg kg ⁻¹ diet								
Parameters	0 (Control)	50	100	200	400				
IBW(g)	4.45±0.24	4.53±0.23	4.53 ± 0.24	4.48±0.23	4.40±0.12				
FBW (g)	24.88±1.97 ^c	28.58 ± 0.76^{b}	29.58±0.72 ^b	26.88±1.94 ^c	31.76±1.09 ^a				
WG (g)	20.43 ± 2.18^{d}	$24.05{\pm}0.76^{\text{b}}$	25.05 ± 0.72^{b}	22.40±1.88 ^c	27.36±1.02 ^a				
ADG(g day ⁻¹)	$0.34{\pm}0.03^{d}$	0.40 ± 0.01^{bc}	0.41 ± 0.01^{b}	0.37±0.03 ^c	0.45±0.01 ^a				
SGR (% day ⁻¹)	$1.24 \pm 0.09^{\circ}$	$1.33{\pm}0.03^{b}$	1.35±0.04 ^b	1.29 ± 0.05^{bc}	1.43±0.02 ^a				
FCR (%)	$1.79{\pm}0.16^{a}$	1.51±0.04 ^b	1.37±0.04c	1.55 ± 0.18^{b}	1.28±0.06 ^c				
FL(cm)	11.60±0.43 ^b	11.98±0.31 ^b	12.23±0.61 ^{ab}	12.01 ± 0.51^{b}	12.66±0.59 ^a				
CF	1.76±0.20	1.87±0.13	1.84±0.15	1.82±0.28	1.79±0.15				
SR (%)	96.65±4.73	96.65±4.73	96.65±4.73	91.65±2.33	91.65±2.33				
HSI (%)	1.74±0.27 ^{ab}	1.67 ± 0.17^{b}	$1.97{\pm}0.19^{a}$	2.02±0.22 ^a	2.22±0.25 ^a				

Table	2:	Growth	performance	of	Oreochromis	niloticus	fed	dietary	Moringa	oleifera	aqueous
		extract	supplementat	ion	for 60 days.						

Data are expressed as means±standard deviations. Values with the same superscripts of the same row are not significantly different (p>0.05). Where, IBW= initial body weight, FBW=final body weight, WG=weight gain, ADG=average daily gain, SGR=specific growth rate, FCR=food conversion ratio, FL=fish length, CF=condition factor, HSI=Hepatosomatic Index.

Table 3: Some biochemical parameters, liver and kidney functions of Oreochromis niloticus	60 days
after dietary Moringa oleifera aqueous extract supplementation.	

	Treatments						
parameters	parameters Dietary <i>M. oleifera</i> extract mg kg ⁻¹ diet						
	0 (Control)	50	100	200	400		
Total protein (g)	4.0 ± 0.80^{b}	$5.16{\pm}1.26^{ab}$	$5.15{\pm}1.05^{ab}$	$5.23{\pm}1.43^{ab}$	$6.20{\pm}1.89^{a}$		
Serum IgM (µg ml ⁻¹)	117.34±14.24 ^b	127.19±34.94 ^{ab}	$125.56{\pm}16.16^{ab}$	$150.15{\pm}44.86^{a}$	112.77 ± 11.62^{b}		
Albumin (g dl ⁻¹)	1.88 ± 0.14	1.96 ± 0.52	1.89 ± 0.39	2.10±0.34	2.03±0.52		
AST (U L^{-1})	58.08 ± 12.64^{a}	$56.08{\pm}14.45^{a}$	56.50±11.00 ^a	55.72 ± 9.98^{a}	44.00 ± 6.28^{b}		
ALT (U L ⁻¹)	39.33±19.93 ^a	40.16 ± 14.62^{a}	38.26±16.13 ^a	40.98 ± 18.64^{a}	31.33±10.35 ^b		
Urea (mg dl^{-1})	$13.14{\pm}1.78^{a}$	$10.89{\pm}\ 2.60^{ab}$	9.10±1.57 ^b	11.16±3.37 ^{ab}	11.17±2.64 ^{ab}		
Creatinine (mg dl ⁻¹)	0.73±0.09	0.73±0.10	0.71 ± 0.08	0.65 ± 0.20	0.80±0.11		
Blood glucose (mg dl ⁻¹)	115.33±7.17 ^a	89.16±16.57 ^b	79.00±13.79 ^b	133.00±31.90 ^a	85.50±19.36 ^b		

Data are expressed as means \pm standard deviations. Values with the same superscripts in the same row are not significantly different (p>0.05).

Additionally, the dietary MOAE received fish groups showed a

pronounced decrease in the SOD, GPX, G6PDH and NO activities (Table 4).

The dietary MOAE supplementation had also triggered a substantial (p<0.05) deviation in the cortisol levels of the *M*. *oleifera* fed fish during the pre and post-hypoxic stress period (Fig. 1). Regarding the pre-hypoxic condition period; the MOAE supplemented fish (G1; 50 mg kg⁻¹ diet) exhibited a significantly lower cortisol level as matched to both the control fish group and G₄ (200 mg MOAE kg⁻¹ diet).

contrary On the pre-hypoxic to condition. elevated serum cortisol levels were equally assessed as a hypoxia-related response in all treated fish groups 30 minute's post-hypoxic Nevertheless, MOAE stress. the supplemented diets decreased the hypoxia-related stress in hypoxic tilapia as conveyed by the gradual drop in the cortisol level two hours after induction of hypoxia. The lowest serum cortisol values were detected in the G₄ and G₅.

 Table 4: Antioxidant enzyme activities in Oreochromis niloticus 60 days after dietary Moringa oleifera aqueous extract supplementation.

	Treatments							
	Dietary <i>M. oleifera</i> extract mg kg ⁻¹							
Parameters	0 (Control)	50	100	200	400			
SOD (U mg ⁻¹)	16.69±0.82 ^a	12.16±2.63 ^b	$7.24{\pm}2.02^{c}$	$7.14{\pm}2.79^{\rm c}$	$5.56 \pm 0.60^{\circ}$			
G6PD (mU mg ⁻¹)	6.21±3.27 ^a	6.10±1.05 ^a	$2.05{\pm}1.08^{b}$	1.56 ± 0.52^{b}	2.17 ± 1.32^{b}			
GPX (mU mg ⁻¹)	4.56±0.56 ^a	4.11±0.26 ^a	$2.29{\pm}0.28^{b}$	2.11 ± 0.28^{b}	1.13±0.11 ^c			
(NO) activity (μ mol L ⁻¹)	26.43±3.55 ^a	$18.97{\pm}8.82^{abc}$	$20.07{\pm}5.25^{ab}$	15.35±4.53 ^{bc}	9.01±0.96 ^c			

Data are expressed as means \pm standard deviations. Values with the same superscripts in the same row are not significantly different (*p*>0.05).

Figure 1: Serum cortisol levels of *Oreochromis niloticus* challenged with acute hypoxia after 60 days of dietary *Moringa oleifera aqueous extract* supplementation. Values with the same superscript letters at initial, 30 ms and 2 hours post-hypoxic stage are not significantly different (p>0.05) between different treated groups.

Iranian Journal of Fisheries Sciences 19(1) 2020

Discussion

MOAE was recently verified to possess a valuable range of active substances. Thev possess growth promoting, antioxidant, tissue protective (liver, kidneys, heart and testes), anti-stressor, and immunomodulatory activities in fish (Alishahi et al., 2010; Stadtlander et al., 2013). This study clarified that feeding tilapia with MOAE containing diet enhanced the growth performance of O. niloticus fingerlings distinctly. The FCR was improved as the dietary inclusion level of MOAE increased. Fish received 400 mg MOAE kg⁻¹ had a markedly high WG, SGR, and ADG. The ethanolic extract of M. oleifera flower (250 and 500 mg kg⁻¹ diet) as well had improved tilapia growth (Tekle and Sahu, 2015). Also, a growth-promoting potential of М. oleifera seed protein extracts was reported by Stadtlander et al. (2013) when added to tilapia diet at 400 mg kg ¹ in an eight weeks experimental period. Not only this but also the dried powder of *M. oleifera* leaves (10 mg kg diet⁻¹) was able to promote the growth of iuveniles of Penaeus indicus as reported by Rayes (2013).

M. oleifera leaves is said to contain vast amount of immuno- nutritional components such as proteins, lipids, vitamins, enzymes, minerals, sugar, saponin and salicylates and other active constituents (Leone et al., 2015). Moreover, Heidarieh et al. (2013) indicated that M. oleifera had enhanced the gastrointestinal morphology of O. mykiss (increased villi length) which improved the food digestibility and absorption capacity. Herein, the increment in growth and diet utilization could be related to its immunonutritional components and the high digestibility, feed absorption and assimilation ability, through the augmented digestive enzymes and healthy intestinal microflora boosted by the M. oleifera prebiotic activity.

In the meantime, the usage of either raw M. oleifera or its extracts as a supplement dietary or protein replacement has shown variable results. Feeding Moringa leaf meal to Nile tilapia at a dietary inclusion level up to 8^{-10%} of the diets hindered tilapia growth (Richter et al., 2003; Yuangsoi and Charoenwattanasak, 2011; Abo-State et al., 2014). Similarly, Afuang et (2003) incorporated methanolal. extracted leaf meal containing fewer saponins and phenolics in the diets (at a inclusion 30% level) of tilapia fingerlings. The fish performance was not hindered, but the body protein content reduced. Whereas, the aqueous extracted leaf meal (15% of the diet) had reduced the feed intake, feed utilization and fish performance (Madalla, 2008). Also, Dongmeza et al. (2006) reported a considerable decrease in the Nile tilapia feed intake and consequently its growth after receiving different dietary moringa leaf extracts (tannin-reduced, saponin-reduced and saponin-enriched).

Measurement of the plasma biochemical parameters is a fundamental step to judge the health integrity of any aquatic species (Ferreira et al., 2007). Plasma proteins carry out many functions, such as adjusting the water balance in fish

(Rudneva and Kovyrshina, 2011) and the protective effects implemented by the body for the elimination of any microorganisms (Gerwick et al., 2002). This study displayed an increased level of plasma protein in the dietary MOAE supplemented fish. Similar conclusions were revealed by Alishahi et al. (2010) and Haghighi et al. (2014) who informed that 0.5% and 1% M. oleifera supplementation dietary had significantly improved the serum total protein and globulin in Cyprinus carpio and O. mykiss respectively. Conversely, the serum total protein levels obtained in this work could not agree with either Dotta et al. (2014) for O. niloticus (0.5% M. oleifera) nor Kavitha et al. (2012) for Cyprinus carpio (exposed to 124.0 mg L^{-1} *M. oleifera* extract). They reported that M. oleifera dietary supplementation was unable to considerably elevate the total serum protein in those fish as an outcome of the metabolic degradation and utilization of protein.

Transaminase of enzymes are dynamic importance in protein and carbohydrate metabolism. Their levels (i.e. transaminases; AST and ALT) are used for judging the physiological and healthy state of aquatic species (Vutukuru et al., 2007). Therefore, they are indicative of organ dysfunction, especially for hepatic dysfunction with a subsequent leakage of enzymes into the blood (Gabriel and George, 2005). The aminotransferase activities were comparable among all the treated groups except for the group fish supplemented with 400 mg MOAE kg diet⁻¹ which displayed a reasonable diminishing in the activity aminotransferase enzymes. This result supports the previous studies that convey the potentiality of *M. oleifera* leaves extract to protect the membrane integrity of tilapia hepatocytes against stressors (Tekle and Sahu, 2015). Also, the increased growth rate conveyed in the current study give further support for the liver integrity as a vital organ implemented in the normal metabolic function of any aquatic organism.

Creatinine and urea are among the biochemical indices dominant particularly determined to assess renal condition (Gross et al., 2005; Adeyemi and Akanji, 2012). The fish received 100 mg MOAE kg⁻¹ exhibited a significant decrease in the urea level. Such reduction may offer a further support of the nephron-protection activity of M. oleifera as reported by Anwar et al. (2007) and Sharma and Paliwal (2012). Also, the comparable distinguished creatinine levels in differently treated fish groups provide support the further to nephronprotective potentiality of MOAE. Nevertheless, our results are dissimilar to Mazumder et al. (1999) who clarified that a weekly dose (>46 mg kg⁻¹ b.wt extract) of M. oleifera methanol root extracts had impaired function of mice kidney. Oyagbemi et al. (2013) as well reported elevated serum creatinine levels in rats administered M. oleifera (200 and 400 mg kg⁻¹ b.w.).

Regarding the blood glucose levels verified in the current study; the MOAE supplemented diet had hypoglycemic effect in all of the treated fish groups. Similarly, fish received herbal additives showed hypoglycemia (Metwally, 2009; Banaee et al., 2011; Ojha et al., had 2014). MOAE successfully governed the glucose level in rabbits (Makonnen et al., 1997) and rats (Amin et al., 2016). The moringa leaf juices contain α -glucosidase and amylase inhibitors. These enzymes prevent the assimilation of glucose into absorbable metabolites. hence preventing the increase in blood glucose (Abdulkarim et al., 2005).

On the contrary; diabetes inducing property was verified to green tea extract indicated by the observed hyperglycemia in green tea extract exposed Nile tilapia (Abdel-Tawwab *et al.*, 2010).

SOD GPX and are sensitive oxidative stress biomarkers. They are considered the core line of the body antioxidant defensive mechanism (Jiang et al., 2009). SOD is a dynamic enzyme responsible for both scavenging ROS and protection of cells from being damaged by free radicals (Chien et al., 2003). In our study, the MOAE supplementation considerably diminished the SOD and GPX activity, indicating that M. oleifera might have capability to reduce peroxide the radicals and converting it into oxygen and water due to an antioxidant potential (Atli and Canli, 2007). M. oleifera could also preserve the cell redox state by restricting the damaging effects of ROS (Halliwell and Gutteridge, 2007). Furthermore, the MOAE dietary supplementation resulted in reduced activity of other antioxidant enzymes. М. oleifera contains active biological compounds (polyphenols, glycosides, anthocyanin, tannins and thiocarbamates). These active compounds expel free radicals, active antioxidant enzymes and inhibit oxidases (Luqman *et al.*, 2011) which give a further clarification for the *M. oleifera* associated antioxidant activity.

Furthermore, this study revealed that acutely hypoxic tilapia had exhibited an elevation in the cortisol level 30 post-hypoxic minute's stress. The elevated cortisol level was reduced distinctly two hours post-hypoxic stress in those fish received 200 and 400 mg MOAE kg⁻¹ feed. The retrieval towards normal cortisol level following MOAE pretreatment proposed hypocortisolemic effects of MOAE. Additionally, the potent antioxidants of Moringa supplemented diets was said to be useful in compromising the adversative properties of stress related hypoxia. Production of oxidative radicals (especially ROS) is thought to boosted under hypoxic be stress and Budinger, 2007). (Chandel Accordingly, these inclusion levels were possibly capable of blocking the hypercortisolemia elicited by the acute stress caused by hypoxia or efficiently restored the homeostatic equilibrium of the life helping physiological systems (Van Rijn and Reina, 2010). Hammed et al. (2015) also reported that extracts of Moringa leaves infiltrate to the cell membrane lipid bilayer, resulting in improved permeability, and ROS elimination. Hence these fish groups could successfully tolerate and recover the hypoxic stress than the others. This study verified the potentiality of M. oleifera aqueous extract as a growth

promoter, antistress and antioxidant for O. niloticus fingerlings. M. oleifera aqueous extracts are proposed to replace synthetic antimicrobials and growth promoters. This study is validate the valuable to safe administration of М. oleifera in commercial tilapia culture. In this concern, future studies are required to comprehend the influence of this plant extract in relieving chronic stress and its possible toxic effect as well. Feasibility study for its commercial usage is required too.

Acknowledgements

This work was supported by the department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.

References

- Abdel-Tawwab, M., Ahmad, M.H.,
Seden, M.E. and Sakr, S.F., 2010.Use of green tea, Camellia sinensisL., in practical diet for growth and
protection of Nile tilapia,
Oreochromis niloticus (L.), against
AeromonasAeromonashydrophila
infection. Journal of the World
Aquaculture Society, 41, 203-213.
- Abdulkarim, S.M., Long, K., Lai, O.M., Muhammad, S.K.S. and Ghazali, H.M., 2005. Some physico-chemical properties of *Moringa oleifera* seed oil extracted using solvent and aqueous enzymatic methods. *Food Chemistry*, 93(2), 253-263.
- Abo-State, H., Hammouda, Y., El-Nadi, A. and AboZaid, H., 2014.

Evaluation of feeding raw moringa (*Moringa oleifera* Lam.) leaves meal in Nile tilapia fingerlings (*Oreochromis niloticus*) diets. *Global Veterinaria*, 13(1), 105-111.

- Adeyemi, O.S. and Akanji, M.A., 2012. Psidium guajava leaf extract: Effects on rat serum homeostasis and tissue morphology. Comparative Clinical Pathology, 21(4), 401-407.
- Afuang, W., Siddhuraju, P. and Becker, K., 2003. Comparative nutritional evaluation of raw methanol extracted residues and of methanol extracts moringa (Moringa oleifera Lam.) leaves on performance and growth feed utilization in Nile tilapia (Oreochromis niloticus L.). Aquaculture Research, 34(13), 1147-1159.
- Alishahi M, Ranjbar, M.,
 Ghorbanpoor, M., Peyghan, R.
 and Mesbah, M., 2010. Effects of dietary *Aloe vera* on some specific and nonspecific immunity in the common carp (*Cyprinus carpio*). *International Journal of Veterinary Research*, 4(3), 189-195.
- Amin, A.Y., El Tobgy, K.M.K., Salam, A. and Hemat, S., 2016. Phytochemical detection and Therapeutical properties of *Moringa* oleifera leaves. International Journal of Chem Tech Research, 9(9), 156-168.
- Anwar, F., Latif, S., Ashraf, M. and Gilani, A.H., 2007. Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21(1), 17-25.

- Atli, G. and Canli, М., 2007. Enzymatic responses to metal in a freshwater exposures fish Oreochromis niloticus. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 145(2), 282-287.
- Banaee, M., Sureda, A., Mirvaghefi, A.R. and Rafei, G.R., 2011. Effects long-term silymarin of oral supplementation on the blood biochemical profile of rainbow trout (Oncorhynchus mvkiss). Fish Physiology and Biochemistry, 37(4), 885-896.
- Bautista, J., Garrido-Pertierra, A. and Soler, G., 1988. Glucose-6phosphate dehydrogenase from Dicentrarchus labrax liver: Kinetic mechanism and kinetics of NADPH inhibition. Biochimica et Biophysica (BBA)-General Acta Subjects, 967(3), 354-363.
- Bulfon, C., Volpatti, D. and Galeotti, M., 2015. Current research on the use of plant-derived products in farmed fish. Aquaculture Research, 46(3), 513-551.
- Burnett, B.P., Pillai, L., Bitto, A., Squadrito, F. and Levy, R.M., 2011. Evaluation of **CYP450** inhibitory effects and steady-state pharmacokinetics of genistein in combination with cholecalciferol and citrated zinc bisglycinate in postmenopausal women. International Journal of Women's Health, 3(1), 139-150.
- Chakraborty, S.B. and Hancz, C., 2011. Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish

culture. Reviews Aquaculture, in 3(3), 103-119.

- Chandel, N.S. and Budinger, G.S., 2007. The cellular basis for diverse responses to oxygen. Free Radical Biology and Medicine, 42(2), 165-174.
- Chien, Y.H., Pan, C.H. and Hunter, **B.**, 2003. The resistance to physical stresses by Penaeus monodon juveniles fed diets supplemented with astaxanthin. Aquaculture, 216(1), 177-191.
- Cooper, G.R. McDaniel, V., and 1970. The determination of glucose the orthoby toluidine method (filtrate and direct procedure). Standard Methods of Clinical Chemistry. 6, 159-170.
- E., Siddhuraju, Dongmeza, P., Francis, G. and Becker, K., 2006. Effects of dehydrated methanol extracts of moringa (Moringa oleifera Lam.) leaves and three of its fractions on growth performance and feed nutrient assimilation in Nile (Oreochromis tilapia niloticus (L.)). *Aquaculture*, 261(1), 407-422.
- Dotta, G., de Andrade, J.I.A., Gonçalves, E.L.T., Brum, A., Mattos, J.J., Maraschin, M. and Martins, M.L., 2014. Leukocyte phagocytosis and lysozyme activity in Nile tilapia fed supplemented diet with natural extracts of propolis and Aloe barbadensis. Fish and Shellfish Immunology, 39(2), 280-284.
- Drupt, F., Paris, M., Frydman, A. and Leclerc, M., 1974. Serum albumin assay by bromocresol green method: Application to different automatic apparatus. Annales

Pharmaceutiques Francaises, (Vol. 32(**5**), 249).

- **FAO., 2014.** Food and agricultural organisation of the United Nations. The state of world Fisheries and Aquaculture 2014. Rome. Italy.
- Fawcett, J.K. and Scott, J.E., 1960. Enzymatic, colorimetric method for determination urea in serum, plasma and urine. *Journal of Clinical Pathology*. 13, 156–162.
- Fernandez,T.J.,1990. Medicinalplantsfor Haemophilusgallinarum infectioninchickens.ASEANJournal on Science andTechnology for Development, 7(22),99-107.
- Ferreira, J.G., Hawkins, A.J.S. and Bricker, S.B., 2007. Management of productivity, environmental effects and profitability of shellfish aquaculture—the Farm Aquaculture Resource Management (FARM) model. *Aquaculture*, 264(1), 160-174.
- Gabriel, U.U. and George A.O.I., 2005. Plasma enzymes in *Clarias* gariepinus exposed to chronic levels of roundup (glyphosate). Journal of Ecology and Environment, 23(2), 271–276.
- Gerwick, L., Steinhauer, R., Lapatra, S., Sandell, T., Ortuno, J., Hajiseyedjavadi, N. and Bayne, C.J., 2002. The acute phase response of rainbow trout (*Oncorhynchus mykiss*) plasma proteins to viral, bacterial and fungal inflammatory agents. Fish and Shellfish Immunology, 12(3), 229-242.
- Gross, J.L., De Azevedo, M.J., Silveiro, S.P., Canani, L.H.,

Caramori, M.L. and Zelmanovitz, T., 2005. Diabetic nephropathy: Diagnosis, prevention, and treatment. *Diabetes Care*, 28(1), 164-176.

- Haghighi, M., Rohani, **M.S.** Pourmoghim, Н., Toliat. Т., Samadi, M., Tavoli, M., Islami, M. and Yusefi, R., 2014. Haematoimmunological indices in rainbow trout (Oncorhynchus mykiss) fry fed with Aloe vera extract supplemented feed. Journal of Coastal Life Medicine, 2, 350-356.
- Halliwell, B. and Gutteridge, J.M.C.,
 2007. Antioxidant defences: Endogenous and diet derived. *Free Radicals in Biology and Medicine*, 4, 79-186.
- Hammed, A.M ,Amosu A.O, Awe, A.F., and Gbadamosi, F.F., 2015. Effects of *Moringa oleifera* leaf extracts on bacteria (*Aeromonas hydrophila*) infected adults African mud cat fish. *International Journal of Current Research*, 7(10), 22117-22122.
- Heidarieh, М., Mirvaghefi, A.R., Sheikhzadeh, Sepahi, A., N., Shahbazfar, A.A. and Akbari, M., 2013. Effects of dietary Aloe vera on growth performance, skin and gastro-intestine morphology in rainbow trout (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences, 13, 367-373.
- Husdan, H. and Rapoport, A., 1968. Estimation of creatinine by the Jaffe reaction. *Clinical Chemistry*, 14(3), 222-238.
- Huyghebaert, G., Ducatelle, R. and Van Immerseel, F., 2011. An

update on alternatives to antimicrobial growth promoters for broilers. *The Veterinary Journal*, 187(2), 182-188.

- Jiang, W.D., Feng, L., Liu, Y., Jiang, J. and Zhou, X.Q., 2009. Myo-inositol prevents oxidative damage, inhibits oxygen radical generation and increases antioxidant enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research, 40(15), 1770-1776.
- Kautsky, N., Rönnbäck, P., Tedengren, M. and Troell, M.,
 2000. Ecosystem perspectives on management of disease in shrimp pond farming. *Aquaculture*, 191(1), 145-161.
- Kavitha, C., Ramesh, M., Kumaran, S.S. and Lakshmi, S.A., 2012. Toxicity of *Moringa oleifera* seed extract on some hematological and biochemical profiles in a freshwater fish, *Cyprinus carpio. Experimental* and Toxicologic Pathology, 64(7), 681-687.
- Knobil, K., 1980. Hormonal researches. *Recent Progress in Hormone Research*, 36, 52-58.
- Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J. and Bertoli, S., 2015. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of *Moringa oleifera* leaves: An overview. *International Journal of Molecular Sciences*, 16(6), 12791-12835.
- Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J., 1951. Protein measurement with the Folin

phenol reagent. *Journal of Biologival Chemistry*, 193(1), 265-275.

- Luqman, S., Srivastava, S., Kumar, R., Maurya, A.K. and Chanda, D., 2011. Experimental assessment of *Moringa oleifera* leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. *Evidence-Based Complementary and Alternative Medicine*, 2012, 1-12.
- Madalla, N., 2008. Novel feed ingredients for Nile tilapia (*Oreochromis niloticus* L.). In: PhD Thesis, Inst. Aquaculture, Univ. Stirling, Scotland, UK.
- Makonnen, E., Hunde, A. and Damecha, G., 1997. Hypoglycaemic effect of *Moringa stenopetala* aqueous extract in rabbits. *Phytotherapy Research*, 11(2), 147-148.
- Mazumder, U.K., Gupta, M., Chakrabarti, S. and Pal, D., 1999. Evaluation of hematological and hepatorenal functions of methanolic extract of *Moringa oleifera* Lam. root treated mice. Indian *Journal of Experimental Biology*, 7, 21-25.
- Mbikay, M., 2012. Therapeutic potential of *Moringa oleifera* leaves in chronic hyperglycemia and dyslipidemia: A review. *Frontiers in Pharmacology*, 3, 24.
- Menz, J., Schneider, M. and Kümmerer, K., 2015. Usage pattern-based exposure screening as a simple tool for the regional priority-setting in environmental risk assessment of veterinary antibiotics:

A case study of north-western Germany. *Chemosphere*, 12, 42-48.

- Metwally, M.A.A., 2009. Effects of garlic (Allium sativum) on some antioxidant activities in tilapia nilotica (Oreochromis niloticus). World Journal of Fish and Marine Sciences, 1(1), 56-64.
- Moss, S.M., Moss, D.R., Arce, S.M., Lightner, D.V. and Lotz, J.M., 2012. The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. *Journal of Invertebrate Pathology*, 110(2), 247-250.
- Nikkon, F., Saud, Z.A., Rehman, M.H. and Haque, M.E., 2003. In vitro antimicrobial activity of the compound isolated from chloroform extract of *Moringa oleifera* Lam. *Pakistan Journal of Biological Science*, 22, 1888-1890.
- Nishikimi, M., Rao, N.A. and Yagi,
 K., 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. *Biochemical and Biophysical Research Communications*, 46(2), 849-854.
- Ojha, M.L., Chadha, N.K., Saini, V.P., Damroy, S., Gupta, C.P. and Savant, P.B., 2014. Effect of ethanolic extract of *Pedalium murex* on growth and haematoimmunological parameters of *Labeo rohita. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*, 84(4), 997-1003.
- Oyagbemi, A.A., Omobowale, T.O., Azeez, I.O., Abiola, J.O., Adedokun, R.A. and Nottidge,

H.O., 2013. Toxicological evaluations of methanolic extract of *Moringa oleifera* leaves in liver and kidney of male Wistar rats. *Journal of Basic and Clinical Physiology and Pharmacology*, 24(4), 307-312.

- Paglia, D.E. and Valentine, W.N., 1967. Studies on the quantitative and qualitative characterization of erthyrocyte glutathione peroxidase. *Journal of Laboratory and Clinical Medicine*, 7, 158–169.
- **Rayes, A.H., 2013.** Study on the effect of dietary probiotic bacteria Arthrobacter species, β -1, 3 glucan and *Moringa oleifera* leaf on protection of *Penaeus indicus* Juveniles from pathogenic *Vibrio harveyi. Researcher*, 5(1), 24-31.
- Reitman, S. and Frankel, S., 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. *American Journal of Clinical Pathology*, 28(1), 56-63
- Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B. and Sasal, P., 2014. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. *Aquaculture*, 433, 50-61.
- Richter, N., Siddhuraju, P. and Becker, K., 2003. Evaluation of nutritional quality of moringa (*Moringa oleifera* Lam.) leaves as an alternative protein source for Nile tilapia (*Oreochromis niloticus* L.). Aquaculture, 217(1), 599-611.
- Rudneva, I.I. and Kovyrshina, T.B.,2011. Comparative study of electrophoretic characteristics of

serum albumin of round goby *Neogobius melanostomus* from Black Sea and Azov Sea. *International Journal of Science and Nature*, 1, 131-136.

- SAS., 2008. Statistical analysis system. User's Guide. SAS INT., Cary, NC. USA.
- Schreck, C.B., 2000. Accumulation and long-term effects of stress in fish. In: Moberg, G.P., Mench, J.A. (Eds.), The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare. CABI Publishing, CAB International, Oxon and New York. pp. 147–158.
- Sharma, V. and Paliwal, R., 2012. Chemo protective role of Moringa oleifera and its isolated saponin against **DMBA** induced tissue damage in male mice: Α histopathological analysis. International Journal of Drug and Research, 4(4), *Development* 215-228.
- Simi, S., Peter, V.S. and Peter, M.S., **2016.** Zymosan-induced immune modifies challenge the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol thyroid and hormone interaction, differential ion transporter functions and nonspecific immune response. General and Comparative Endocrinology. 251, 94-108. http://doi.org/10.1016/j.ygcen.2016. 11.009
- Stadtlander, T., Sander, C., Kumar, V., Makkar, H. and Becker, K.,

2013. Effects of *Moringa oleifera* Lam. dietary seed protein extracts on growth, nutrient utilization and blood parameters in common carp (*Cyprinus carpio*, L.) and Nile tilapia (*Oreochromis niloticus*, L.). *Planta Medica*, 79(**13**), PL21.

- Suarez, M., Entenza, J.M., Doerries, C., Meyer, E., Bourquin, L., Sutherland, J., Marison, I., Moreillon, P. and Mermod, N., 2003. Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities. *Biotechnology and Bioengineering*, 81(1), 13-20.
- Tekle, E.W. and Sahu, N.P., 2015. Growth and immunodulatory response of Nile tilapia *Oreochromis niloticus* fingerlings to ethanolic extract of *Moringa oleifera* flower. *International Journal of Scientific and Research Publications*, 5(7), 285-296.
- Van Bezooijen, **R.L.**, Oue. I.. A.G., Ederveen, Kloosterboer, H.J., Papapoulos, S.E. and Lowik, C.W., 1998. Plasma nitrate+ nitrite levels are regulated by ovarian steroids but do not correlate with trabecular bone mineral density in Endocrinology, rats. Journal of 159(1), 27-34.
- Van Rijn, J.A. and Reina, R.D., 2010. Distribution of leukocytes as indicators of stress in the Australian swellshark, *Cephaloscyllium laticeps. Fish and Shellfish Immunology*, 29(3), 534-538.
- Vutukuru, S.S., Pauleena, J.S., Rao, J.V. and Anjaneyulu, Y., 2007. Architectural changes in the gill

morphology of the freshwater fish, *Esomus danricus* as potential biomarkers of copper toxicity using automated video tracking system. *Environmental Bioindicators*, 2(1), 3-14.

Wang, T., Lefevre, S., Van Cong, N. andBayley, M., 2009. The effects of hypoxia on growth and digestion. *Fish Physiology*, 27, 361-396.

Yuangsoi, B. and S., 2011. Charoenwattanasak, Utilization of moringa (Moringa oleifera Lam.) leaf on growth performance and protein digestibility in Tilapia (Oreochromis niloticus L.). Proceedings the of 49th Kasetsart University Annual Conference, Kasetsart University, Thailand, 1-4 February, 2011. Vol. Subject: 3. Fisheries Kasetsart University. pp. 317-326