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Abstract 

Real-time quantitative PCR (qPCR) was performed to elucidate the abundance of 

Aeromonas hydrophila and Pseudomonas fluorescens, which are among the most 

widespread fish pathogens in ponds. Both pathogens have three different breeding 

patterns, namely, (a) gibel carp (Carassius auratus gibelio), (b) yellow catfish 

(Pelteobagrus fulvidraco), and (c) black carp (Mylopharyngodon piceus), over a 

production season. Results revealed that pond sediments have significantly higher 

bacterial levels of A. hydrophila and P. fluorescens (10
5
–10

6
 copies µl

-1
 DNA) than 

pond water (10
3
–10

4
 copies µl

-1
 DNA). In addition, independent regression models 

revealed that environmental variables influence the levels of pathogenic bacteria. The 

occurrence of A. hydrophila and P. fluorescens were significantly positively correlated 

to dissolved oxygen and water temperature, respectively. On the contrary, both 

pathogens were negatively correlated to total nitrogen. In this study, the prevalence of 

pathogenic bacteria and their relationships with physicochemical factors in different 

pond environments were investigated for the first time through a molecular method. 

Furthermore, although we did not include fish diseases occurring during the production 

season, our results can provide useful theoretical information for fish breeding 

especially with regard to the prevention of related bacterial diseases. 
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Introduction 

Over the last 30 years, aquaculture 

industries have progressed in China, 

and capital-intensive production has 

become the main breeding pattern 

(Zhang et al., 2014). The total 

production increased from 1.23 million 

tons in 1979 to 45.41 million tons in 

2013 because of the increase in 

intensive farming and total aquaculture 

area (Dong, 2014). However, bacterial 

diseases, which can cause substantial 

socio-economic losses, have increased 

and thus have become a major threat 

(Austin and Austin, 2012; Xu and 

Zhang, 2014). According to Austin and 

Austin (2012), bacterial diseases 

affecting freshwater fish are caused by 

Vibrio, Salmonella, Aeromonas, and 

Pseudomonas. Aeromonas hydrophila 

and Pseudomonas fluorescens are the 

most widespread fish pathogens. A. 

hydrophila is the causative agent of 

motile aeromonas septicemia 

(Harikrishnan et al., 2003) and infects 

several fish species, including tilapia 

(Oreochromis spp.), catfish (Silurus 

asotus), goldfish (Carassius auratus), 

common carp (Cyprinus carpio), and 

eel (Anguilla japonica; Pridgeon et al., 

2011). By contrast, P. fluorescens is 

responsible for the hemorrhaging at the 

base fins (Austin and Austin, 2012). A. 

hydrophila and P. fluorescens are 

considered as opportunistic fish 

pathogens (Harikrishnan and 

Balasundaram, 2005; da Silva et al., 

2012), and diseases caused by them are 

common in Chinese aquaculture ponds 

(Lu, 1992; Deng et al., 2011).  

    The outbreaks of fish diseases 

depend on several factors, such as 

quality of pond water, natural 

conditions, whether a fish is captured, 

and abundance of pathogenic bacteria 

(Ekwenye and Ugwoejf, 2009; Moore 

et al., 2014). Previously, using 

chemotherapeutic agents or antibiotics 

in aquaculture ponds to prevent 

different bacterial diseases in fish ponds 

was a common practice (Liu and Song, 

2007). However, chemotherapeutic 

agents may cause stress to fish and 

pollute the environment when used in 

excessive amounts, while using 

antibiotics to modulate the “healthy gut 

microbiota” often produces antibiotic-

resistant bacteria (Smith et al., 1994; 

Cabello, 2006; Ringø et al., 2014; 

2016). Thus, early prevention is 

important. Furthermore, gaining 

knowledge on the abundance of 

important pathogens in ponds and their 

relationships with environmental 

factors is important as a precaution. 

However, to the best of our knowledge, 

no study has reported such research in 

China. 

    Real-time quantitative PCR (qPCR) 

is a rapid and sensitive method and is 

highly specific, and thus obtaining 

quantitative information through this 

method is easy in the presence of 

pathogens (Shannon et al., 2007; Liu et 

al., 2012). In the present study, we 

aimed to assess the abundance of A. 

hydrophila and P. fluorescens in 

different freshwater pond environments 

through qPCR and monitor the effects 

of environmental physicochemical 

factors. In addition, the present study is 

conducted to establish baseline 

information necessary for the 

formulation of pragmatic disease 
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prevention and control, which have not 

been evaluated so far. 

 

Materials and methods 

Fish ponds with different breeding 

patterns 

The present study was carried out in 

nine ponds with the following three 

traditional breeding patterns: gibel carp 

(pond MGC), yellow catfish (pond 

MYC), and black carp (pond MBC). 

Each breeding pattern included three 

rectangular replicate ponds with an 

average depth of 1.8 m. The ponds were 

randomly selected from two fish farms 

located in Jingzhou city, Hubei 

province, China. Water was mainly 

supplied by underground water. 

Different fish species and the number of 

fish cultured in the ponds are shown in 

Table 1.  

 

 

Table 1: Management of different breeding ponds. 

Management 

issue 

Breeding patterns 

MGC MYC MBC 

Pond area 1×667 m
2
 2.3×667 m

2
 12×667 m

2
 

Stocking period March–April March–April February–March  

Stocking size 

(g/tail) 

GC: 30.3, SC: 300,  

BC1: 150, BSB: 150 

YC:7, SC:150,  

BC1: 450 

BC: 750, GC:17,  

SC: 25, BC1: 150 

Stocking density 

(Tail/667m
2
) 

GC: 2200, SC: 150,  

BC1:25, BSB: 50 

YC:10000, SC: 50, 

BC1: 207 

BC: 1200, GC: 300,  
SC: 250, BC1: 50 

GC: gibel carp, YC: yellow catfish, BC: black carp, SC: silver carp (Hypophthalmichthys molitrix), BC1: 

bighead carp (Aristichthys nobilis), BSB: blunt snout bream (Megalobrama amblycephala), MGC: pond 

of mainly breeding gibel carp, MYC: pond of mainly breeding yellow catfish, MBC: pond of mainly 

breeding black carp. 

 

Sample collection 

Water and sediment samples were 

collected from the fishpond from the 

20th to the 21st of each month from 

April to October 2013. This period is 

the production season. Water samples 

were collected using plastic containers 

(500 ml) approximately 30–50 cm from 

the water surface at three different 

locations (inlet, middle, and outlet) of 

each pond. Samples were pooled 

together as one representative sample to 

prevent spatial heterogeneity. Pooled 

water (250 ml) was first filtered through 

glass fiber filters (1.2 μm-large pores, 

Whatman type GF/C, England) and 

then through a cellulose acetate 

membrane (0.45-μm pore size, 

Millipore, USA). Both filters were 

collected and stored at −20 °C until 

total microbial DNA was extracted. The 

same amount of pooled water was used 

to assess chemical variables. 

    A Peterson dredge (PSC-1/16, Wuhan 

Yisai Co., LTD) was used to collect 

sediment samples from the middle 

location near the feeding platform of 

each pond. The method of collection 

was based on a previous study that 

evaluated optimum sampling points in 

ponds (Jing et al., 2009). All sediments 

were preserved in sealed bags at −20°C 

prior to microbial total DNA extraction. 

During the sampling period, no fish 

diseases were noticed, and the mortality 

rates of gibel carp in pond MGC, 

yellow catfish in pond MYC, and black 

carp in pond MBC had an average of 

0.7%, 0.43%, and 0.06%, respectively, 

in each pond over the production season. 
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No death was revealed for bighead carp 

and silver carp during the experiment.  

 

Physicochemical parameters of pond 

water 

Dissolved oxygen (DO), water 

temperature (T), and pH at the water 

surface were measured using a HACH-

hq40d probe (HACH, USA). Total 

nitrogen (TN), total phosphorus (TP), 

phosphate (PO4–P), nitrate nitrogen 

(NO3–N), ammonia nitrogen (NH4–N), 

and nitrite nitrogen (NO2–N) were 

measured using a HACH DR2700 

(HACH, Colorado, USA) according to 

the manufacturer’s manual.  

 

DNA extractions 

The glass fiber filters and cellulose 

acetate membrane used to filter pooled 

water were cut into small pieces and 

soaked in 3 mL of sterile lysis solution 

(30 mmol of L
−1

 EDTA, 10 mmol L
−1

 

of Tris-HCl, 05% sodium dodecyl 

sulphate (SDS), 0.1 mg of proteinase K, 

0.05 mg of RNase A) overnight at 

55 °C. This step was followed by 

standard phenol/chloroform extraction 

performed through a previously 

described method (Li et al., 2012a). 

DNA was precipitated with cold ethanol 

and pelleted by centrifugation at 13 000 

g for 20 min at 4 °C. The pellets were 

washed with 70% ethanol and air-dried 

for 30 min and then resuspended in 50 

μL of TE buffer solution. DNA 

preparation for the sediment samples 

(2.5 g for DNA extraction) was 

performed using an A.E.Z.N.A.TM Soil 

DNA Kit (OMEGA, USA) according to 

the manufacturer’s instructions. All 

DNA solution was stored at −20°C until 

further use. 

 

Quantifying A. hydrophila and P. 

fluorescens through qPCR 

The absolute abundance of A. 

hydrophila and P. fluorescens were 

quantified through qPCR and by using 

standards constructed with known 

amounts of plasmid DNA. Briefly, the 

PCR products of 16S rRNA genes were 

gel-purified, and then cloned into 

pMD18-T vectors, and finally 

transformed into Escherichia coli cells. 

After confirmation by sequencing, 

plasmid DNAs-that contained the 

cloned 16S rRNA genes were extracted. 

DNA concentration was determined 

spectrophotometrically with a serial of 

10-fold dilutions (from 1×10
4
 to 1×10

8
). 

Standard curves were then established 

using diluted plasmid DNA in qPCR. 

The abundances of A. hydrophila, P. 

fluorescens, and total bacteria in each 

water and sediment sample were then 

evaluated. Three repetitions were 

performed for each breeding pattern, 

and 18 samples (9 water samples and 9 

sediment samples) were analyzed each 

month. 

    The qPCR analysis was carried out 

on an ABI 7500 FAST system (Applied 

Biosystems, Tacoma, Washington, USA) 

as described elsewhere (Li et al., 2013). 

Each PCRcontained 25 µl of 16SYBR 

Green qPCR master mix (Merck KGaA, 

Shanghai Ruian), 0.2 µmol ml
-1

 of each 

primer (Table 2), and 2 µL DNA 

templates (10 ng µl
-1

). PCR cycling 

included an initial denaturation for 10 

min at 95 °C, followed by 40 cycles of 

95 °C for 10 s and 60 °C for 40 s. 
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Fluorescence readings were collected at 

each extension step, and final melting 

analysis was performed to check 

nonspecific product formation. Each 

sample included three replicates. 

 

 

Table 2: DNA sequences used for qPCR primers. 

Assay Primer code Oligonucleotide sequence (5′–3′) Reference 

All bacteria 
Eub338F ACTCCTACGGGAGGCAGCAG 

Fierer et al., 2005 Eub518R ATTACCGCGGCTGCTGG 

Aeromonas 

hydrophila 

AER-F GATTGCGGCCAACCAGTC 
Meng et al., 2012 

AER-R CCCCAGCGCAGGAAGC          

Pseudomonas 

fluorescens 

XZP-F GCCCGAAATTGGGTCTGTAG 

Deng et al., 2010 
XZP-R CCCCAAGCAATCTGGTTATACT     

 

Statistical analysis 

For statistical purposes, the 16S rRNA 

gene copies for A. hydrophila and P. 

fluorescens in the culture were 

calculated and then log10 transformed. 

Environmental conditions that affected 

the abundance of pathogenic bacteria 

were investigated separately through 

independent regression models. 

Statistical analyses were performed 

using SPSS 18.0 (PASW statistics, 

USA), and the level of significance was 

set at a p value of <0.05. 

 

Results 

Abundance of A. hydrophila and P. 

fluorescens in different ponds 

The abundance of A. hydrophila and P. 

fluorescens in different pond water and 

sediment samples were measured by 

qPCR from April to October. During 

the sampling period, copies µl
-1

 DNA 

of A. hydrophila in the water samples 

ranged from 2.10×10
4
±0.56×10

4
 to 

5.85×10
5
±1.57×10

5
 in the MGC pond, 

from 1.17×10
4
±0.93×10

4 
to 

2.89×10
5
±2.65×10

5
 in the MYC pond, 

and from 0.99×10
4
±0.72×10

4 
to 

5.42×10
4
±1.37×10

4
 in the MBC pond. 

The abundance of P. fluorescens ranged 

from 0.86×10
3
±0.04×10

3
 to 

11.5×10
3
±7.27×10

3 
in the MGC pond, 

from 0.71×10
3
±0.54×10

3
 to 

3.44×10
3
±0.91×10

3 
in the MYC pond, 

and from 0.87×10
3
±0.28×10

3
 to 

2.31×10
3
±2.5×10

3 
in the MBC pond 

(Table 3).  

    qPCR analysis on the sediment 

samples revealed that copies µl
-1

 DNA 

of A. hydrophila were from 

1.04×10
6
±0.17×10

6 
to 

4.19×10
6
±0.51×10

6
 in the MGC pond, 

from 1.15×10
5
±0.35×10

5 
to 

11.1×10
5
±9.99×10

5
 in the MYC pond, 

and from 2.42×10
5
±3.04×10

5
 to 

7.54×10
5
±3.06×10

5
 in the MBC pond. 

The abundance of P. fluorescens ranged 

from 0.19×10
5
±0.05×10

5 
to 

1.68×10
5
±0.42×10

5 
in the MGC, from 

0.19×10
5
±0.04×10

5 
to 

3.85×10
5
±0.69×10

5
 in the MYC pond, 

and from 0.22×10
5
±0.06×10

5
 to 

5.40×10
5
±1.84×10

5 
in the MBC pond 

(Table 4).  
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Table 3: Quantification of the ribosomal gene copies of two pathogenic bacteria by qPCR from 

different pond water samples at different sampling times. 

Sampling 

time 

16S rRNA genes copy number of water sample (copies µl
-1

 DNA, mean±SD)  

MGC MYC MBC 

AER(×10
4
) PSE(×10

3
) AER (×10

4
) PSE (×10

3
) AER (×10

4
) PSE (×10

3
) 

Apr. 6.79 ± 2.34 3.98 ± 1.91 3.97 ± 1.52 2.2 ± 0.95 2.49 ± 0.4 1.51 ± 0.36 

May 5.23 ± 4.49 4.09 ± 1.33 12.3 ± 8.9 3.21 ± 2.34 1.64 ± 2.09 2.31 ± 2.5 

Jun. 2.10 ± 0.56 5.22 ± 4.94 2.9 ± 1.23 1.67 ± 0.24 1.01 ± 0.9 2.18 ± 1.85 

Jul. 7.29 ± 2.09 11.5 ± 7.27 26.4 ± 11.2 3.44 ± 0.91 0.99 ± 0.72 1.73 ± 0.93 

Aug. 9.44 ± 2.58 0.86 ± 0.04 14.1 ± 6.16 0.71 ± 0.54 5.42 ± 1.37 0.87 ± 0.28 

Sep. 3.61 ± 0.83 2.43 ± 1.19 28.9 ± 26.5 1.50 ± 0.34 4.94 ± 4.03 2.30 ± 1.38 

Oct. 58.5 ± 15.7 2.42 ± 0.36 1.17 ± 0.93 0.90 ± 1.10 2.02 ± 1.30 1.33 ± 0.88 

MGC: pond of mainly breeding gibel carp, MYC: pond of mainly breeding yellow catfish, MBC: pond of 

mainly breeding black carp, AER: Aeromonas hydrophila, PSE: Pseudomonas fluorescens. 

 

Table 4: Quantification of the ribosomal gene copies of the two pathogenic bacteria through qPCR 

from different culturing pond sediment at different sampling times. 

 
Sampling 

time 

16S rRNA genes copy number of sediment sample (copies µl-1 DNA, mean±SD)  

MGC MYC MBC 

AER(×106) PSE(×105) AER(×105) PSE(×105) AER (×105) PSE(×105) 

Apr. 1.21 ± 0.19 1.41 ± 0.71 6.65 ± 4.00 1.77 ± 0.14 3.00 ± 2.65 2.31 ± 0.45 

May 1.79 ± 0.22 1.29 ± 0.25 7.41 ± 2.90 1.98 ± 0.45 3.55 ± 1.84 3.74 ± 2.96 

Jun. 1.64 ± 0.23 1.68 ± 0.42 8.91 ± 4.75 2.43 ± 0.40 3.85 ± 2.73 4.98 ± 1.27 

Jul. 1.04 ± 0.17 1.55 ± 0.36 1.15 ± 0.35 3.08 ± 0.36 2.42 ± 3.04 2.54 ± 0.62 

Aug. 1.75 ± 0.35 1.67 ± 0.53 3.01 ± 1.73 3.85 ± 0.69 3.73 ± 2.86 3.81 ± 1.46 

Sep. 2.57 ± 0.28 1.65 ± 0.63 11.1 ± 9.99 3.40 ± 0.35 5.74 ± 1.19 5.40 ± 1.84 

Oct. 4.19 ± 0.51 0.19 ± 0.05 9.09 ± 7.08 0.19 ± 0.04 7.54 ± 3.06 0.22 ± 0.06 

MGC: pond of mainly breeding gibel carp, MYC: pond of mainly breeding yellow catfish, MBC: pond of 

mainly breeding black carp, AER: Aeromonas hydrophila, PSE: Pseudomonas fluorescens. 

 

Temporal and spatial changes of A. 

hydrophila and P. fluorescens in ponds 

The ratio of A. hydrophila and P. 

fluorescens to all bacteria was 

calculated and transformed to log10 to 

compare the temporal and spatial 

changes of the pathogenic bacteria in 

different ponds. The general trends of A. 

hydrophila population in the MGC and 

those of the MYC ponds were similar 

but with large fluctuations during 

sampling. However, the relative 

abundances of the pathogens in the 

MBC pond varied. In particular, the 

abundance decreased initially, and then 

increased, and finally decreased again 

(Fig. 1a). The temporal changes in A. 

hydrophila in the pond sediments were 

evident in different breeding patterns 

(Fig. 1b). In the pond water and 

sediment samples (Fig. 1), the 

abundance of A. hydrophila in the 

MGC and that of the MYC ponds were 

significantly higher (p<0.05) than that 

in the MBC pond. 

    Temporal changes observed in P. 

fluorescens in the pond water revealed a 

similar trend, as indicated by the qPCR 

results. In particular, a decrease of P. 

fluorescens abundance was observed 

from April to October (Fig. 1c). In the 

pond sediments of MYC and MBC, the 

abundance of P. fluorescens had 

minimal change during the sampling 

periods, whereas the abundance of P. 

fluorescens in the MGC pond was 

significantly (p<0.05) lower than those 

of the other ponds (Fig. 1d). 
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 a 

 

  

 

 

 

 

 

 

b 

 c     

 d 

Figure 1: Temporal changes observed in Aeromonas hydrophila (a [water] and b 

[sediment]) and Pseudomonas fluorescens (c [water] and d [sediment]). 

The results are based on the relative abundances determined by qPCR. 

MGC: pond of mainly breeding gibel carp, MYC: pond of mainly 

breeding yellow catfish, MBC: pond of mainly breeding black carp. W: 

water; S: sediment. a,b represent significant (p<0.05) difference. 
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Influence of environmental factors on A. 

hydrophila and P. fluorescens 

Environmental variables that influenced 

the abundance of A. hydrophila and P. 

fluorescens were identified. Fig. 2 

shows the statistical associations 

between the variables and relative 

abundances of the two pathogenic 

bacteria. In the pond water samples, TN 

and NH4–H negatively influenced the 

abundance of P. fluorescens, whereas 

DO had a positive effect, as indicated 

by the results from independent 

regression analysis (Fig. 2a, 2b, 2c, 

r
2
=0.11, 0.06, and 0.14, respectively). 

In the sediment samples, TN had 

significantly negative relationship with 

P. fluorescens abundance (Fig. 2d, 

r
2
=0.13), while water temperature had a 

positive influence (Fig. 2e, r
2
=0.31). 

    TN, which had a significant effect, 

was the only factor related to A. 

hydrophila abundance in the pond 

water samples (Fig. 2f, r
2
=0.12). In 

comparison, the results revealed that 

phosphate and TP were significant 

factors that positively influenced A. 

hydrophila abundance in the pond 

sediments. In Fig. 2h, g, r
2
=0.07 and 

0.08, respectively. 

 

 

r2 = 0.13 

d 

r2 = 0.11 

a 

r2 = 0.06 

b 

c 

r2 = 0.14 
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Figure 2: Predicted probabilities for the detection of relative density of the two pathogenic bacteria 

related to environmental factors. (a)–(c) for Pseudomonas fluorescens in pond water and 

(d)–(e) for Pseudomonas fluorescens in pond sediment, (f) for Aeromonas hydrophila in 

pond water, and (h)–(g) for Aeromonas hydrophila in pond sediment. 

 

Discussion 

A. hydrophila and P. fluorescens are 

opportunistic fish pathogens and widely 

distributed in freshwater fishponds 

(Nielson et al., 2001; Akinbowale et al., 

2007). In the present study, the 

abundance of A. hydrophila and that of 

P. fluorescens in three freshwater 

fishponds with three breeding models, 

mainly gibel carp (MGC), yellow 

catfish (MYC), and black carp (MBC) 

were determined. These fish species are 

commonly used in pond aquaculture in 

the Hube Province, China (Zhang and 

Tan, 1989; Ma, 2011).  

    The abundances of A. hydrophila 

(~10
4
) and P. fluorescens (~10

3
) in 

pond waters were lower than those in 

the pond sediments (~10
5
–10

6
). The 

high bacterial loads in the pond 

sediments were in agreement with the 

previous findings of Al-harbi and 

Uddin (2004, 2005), while the bacterial 

counts range from 10
6 

cfu g
−1 

to 10
8 

cfu 

g
−1

 in the sediments of brackish water 

ponds in Saudi Arabia. Zhang et al. 

(2008) and Li et al. (2012b) 

documented that Vibrio and Aeromonas 

are prevalent in pond sediments in 

China. The increase in bacterial loads in 

the sediments may be attributed to the 

abundance of organic matters, which 

are nutrient sources used by various 

bacteria (Al-harbi and Uddin, 2005). 

The fish samples appeared to be healthy 

during the sampling, and no fish 

r2 = 0.07 

h

 a  

r2 = 0.08  

 

r2 = 0.31 

e 

r2 = 0.12 

f 

g

 a  
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morbidity caused by the two pathogenic 

bacteria was documented, This result 

suggests that the abundances of A. 

hydrophila and P. fluorescens had <10
4
 

copies µl
-1

 DNA and < 10
3 

copies µl
-1

 

DNA, respectively in the pond water 

samples, and both bacteria had <10
5 

copies µl
-1

 DNA in the pond sediment 

samples. Furthermore, both bacteria can 

be tolerated by gibel carp, yellow 

catfish, and black carp. Although this 

hypothesis merits further investigations, 

our data may serve as baseline 

information for fish farmers engaged in 

gibel carp, yellow catfish, and black 

carp culture in freshwater ponds in 

China. However, the zoonotic potential 

of the two pathogenic bacteria 

evaluated in the present study should 

not be disregarded, as pond technicians 

are constantly exposed or in contact 

with fish and the environment 

(Pakingking et al., 2015).  

    The dynamic changes observed in the 

two pathogenic bacteria in the three 

ponds were different. Furthermore, the 

abundance of A. hydrophila in MBC 

was lower compared to those in the 

other ponds. The large surface area of 

MBC that enables self-healing and 

maintain the water quality may explain 

the lower pathogenic abundance as 

previously documented (Juszczak et al., 

2007).  

    Understanding the relationships 

between environmental factors and 

pathogenic bacteria are of importance 

to regulate the cultured water quality. In 

the current study, TN and NH4–N had 

significant negative effects on A. 

hydrophila and P. fluorescens in pond 

water, indicating that the presence of 

the pathogens may decrease at 

increased TN and NH4–H 

concentrations. This result is in 

disagreement with those of a previous 

study, which reported that high NH4–N 

concentration in aquaculture water can 

cause bacterial disease or even death of 

cultured freshwater fish (Wang et al., 

2013). The abundance of P. fluorescens 

increased with DO concentrations in the 

pond water, possibly because the 

bacterium is strictly aerobic and thus 

requires oxygen to perform respiratory 

metabolism (Austin and Austin, 2012). 

Meanwhile, water temperature had 

significant positive correlations to P. 

fluorescens abundance, suggesting that 

reducing water temperature can 

decrease the abundance of P. 

fluorescens. This result is in accordance 

with that of Olanya et al. (2014), who 

reported that water temperature is an 

important factor that regulates P. 

fluorescens abundance. Meanwhile, A. 

hydrophila abundance in pond sediment, 

reducing phosphate and TP 

concentrations may control the density 

of the bacterium in pond sediments, 

because A. hydrophila can produce 

phosphatase. Furthermore, pond 

sediments are rich in phosphate and TP 

(Zhang et al., 2014).  

    Regular monitoring of pathogenic 

bacteria and physicochemical factors in 

the water and sediments of freshwater 

fishponds through molecular methods, 

such as qPCR, monthly or weekly can 

be instituted. Wu et al. (1994) 

documented the importance of 

preventing fish injury to reduce the 

invasion of pathogenic bacteria. In 

addition, biological elements must also 
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be considered in practical culture, 

especially of fish. Pakingking et al. 

(2015) reported that pond water and 

sediment bacteria directly influence the 

bacterial microbiota present in the gills 

and intestines of several fish species. 

    In conclusion, A. hydrophila and P. 

fluorescens are more prevalent in 

freshwater fish pond sediments than 

those in the studied pond water. The 

abundance of A. hydrophila and P. 

fluorescens were <10
4
 and <10

3 
copies 

µl
-1

 DNA, respectively, in pond water, 

and the abundances of both bacteria 

were <10
5 

copies µl
-1

 DNA in the pond 

sediment. Furthermore, both bacteria 

can be tolerated by gibel carp, yellow 

catfish, and black carp, which are 

commonly cultured in China. The 

occurrences of A. hydrophila and P. 

fluorescens were positively and 

significantly correlated to DO 

concentration and water temperature, 

respectively. However, both 

occurrences were negatively correlated 

to TN concentration. In future studies, 

the influence of these environmental 

factors on pathogenic bacteria will be 

investigated.  
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