Seasonal changes in biochemical composition and meat yield of Shabut (Barbus grypus, Heckel 1843)

Ilkan Ali Olgunoglu*; Mine Percin Olgunoglu; Engin Artar

Adiyaman University, Aquaculture and Fisheries Program, Kahta Vocational Training School, 02400 Kahta-Adiyaman, Turkey.

*Corresponding author's email: iolgunoglu@adiyaman.edu.tr

Received: April 2010 Accepted: July 2010

Keywords: Shabut, Barbus grypus, Meat yield, Biochemical composition

According to the records of FAO (Food and Agriculture Organization), Shabut, also known as Barbus grypus, is one of the most significant fish species listed in the fresh waters of Iraq and in the rivers along South and Southwest Iran, the Karoon river, and also in The Euphrates River and Tigris Rivers in Turkey (Selki et al., 2005; Zivotofskya & Amar, 2006; Dorostghoal et al., 2009). This fish with dark anal and tail fins and other light colored fins (Selki et al., 2005) is one of the leading fish species from the Atatürk Dam Lake with great importance in economy (Olgunoglu et al., 2009). Atatürk Dam is one of the largest earth-and-rock filled dams in the world, having been built on the Euphrates River in south-eastern Anatolia, Turkey, with a total area of 817 km², is the biggest reservoir in Turkey and has a high fishing potential (Oymak et al., 2009). Through a retrospective study of the literature, it was recognized that the analysis carried out so far on Barbus grypus was insufficient and the data on its nutritional value was inadequate. However, it is extremely important to determine and keep a record of the nutritional quality of such type of nutrients for healthy consumption. In this study, Shabut (Barbus grypus) was examined for amino acid sufficiency and balance, additionally the seasonal changes in nutritional values of mineral substances and fatty acids which are known to have extremely important effects on human health were identified with this research. The samples of Shabut (Barbus grypus) used in the research were classified according to their length and then the amounts that were edible and inedible were identified with a 0.1g precision scale to obtain meat yield. The ratio of the remaining weight of meat to the total body weight after removing the head, fins, scales and all internal organs was measured as the net edible meat yield and reported in percentage (%) (Izci & Erta, 2004). For the spring and summer seasons 22 pairs and for autumn and winter seasons 21 pairs (86 fish) were used in this study. The average crude protein, fat, moisture, ash, carbohydrates, energy, copper, (Cu), zinc (Zn), iron (Fe), phosphorus (P) and calcium (Ca) amounts of
and analysis of fatty acids and amino acids on edible meat samples were carried out in the Industrial Services Laboratories of TUBITAK–MAM (The Scientific & Technological Research Council of Turkey at Marmara Reasearch Centre). The protein analysis belonging to the samples was carried out according to the Kjeldahl Method (Association of Official Analytical Chemists) (AOAC, 1995), the fat analysis was carried out according to the Acid Hydrolosis Soxtec System (AOAC, 1995), the moisture analysis was made by dehydrating the homogenized samples to a fixed weight with an incubator, and the raw ash was analysed by burning the samples at 550°C (AOAC, 1995). The carbohydrate and energy calculation of samples were evaluated with the Method of Watt and Merril (1975), Cu, Zn and Fe were identified according to Atomic Absorbtion Spectrophotometric (AAS) Method (AOAC, 2005). The amino acid analysis was carried out on the Varian GC, CP-3800GC by using the devices (Anon, 1998), the fatty acids that belong to the samples were prepared according to the lipids methyl esters IUPAC II. D.19. (1979). Methods and analyses were carried out by using the Elmer Autosystem XL Gas Chromotography and Flame Ionization Detector (FID). Supelco 2330 Fused Silica Capillary Column (30mx0.25mmx0.20μm film width) was used for determining the fatty acid composition. For data analysis, standard deviation and ANOVA were employed by using SPSS 13.0 Windows software. Significance of differences was defined at $p<0.05$. The average meat yield and biochemical composition values of Shabut ($Barbus grypus$) for four seasons are displayed on Table 1.

Table 1: Average meat yield and biochemical composition values of Shabut ($Barbus grypus$) for four seasons

<table>
<thead>
<tr>
<th>Season</th>
<th>Protein (g/100g)</th>
<th>Fat (g/100g)</th>
<th>Moisture (g/100g)</th>
<th>Ash (g/100g)</th>
<th>Carbohydrate (g/100g)</th>
<th>Energy (kcal/100g)</th>
<th>Meat yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>19.81±0.04</td>
<td>2.00±0.20</td>
<td>76.93±0.26</td>
<td>1.09±0.09</td>
<td>0.17±0.01</td>
<td>98±0.10</td>
<td>68.79±1.90</td>
</tr>
<tr>
<td>Winter</td>
<td>19.63±0.99</td>
<td>5.73±0.12</td>
<td>72.40±0.18</td>
<td>1.24±0.02</td>
<td>1.00±0.02</td>
<td>134±0.13</td>
<td>71.83±4.80</td>
</tr>
<tr>
<td>Spring</td>
<td>17.56±0.04</td>
<td>3.05±0.16</td>
<td>76.26±0.21</td>
<td>0.86±0.01</td>
<td>2.24±0.02</td>
<td>107±0.12</td>
<td>70.35±2.07</td>
</tr>
<tr>
<td>Summer</td>
<td>20.38±0.05</td>
<td>5.40±0.21</td>
<td>73.02±0.19</td>
<td>1.07±0.07</td>
<td>0.13±0.01</td>
<td>131±0.20</td>
<td>68.66±6.47</td>
</tr>
</tbody>
</table>

| Seasonal average | 19.34±1.23 | 4.04±1.81 | 74.65±2.27 | 1.06±0.16 | 0.88±0.99 | 117.5±17.75 | 69.91±1.49 |

Values are shown as means ± SD of triplicate measurements
Mean values in the same row having the same superscript are significantly different ($P<0.05$)

The seasonal averages of protein, ash and moisture amounts displayed similarity to Papan & Moghaddam’s (2008) findings, the meat yield values of Shabut was higher compared to the other species reported by Özcan & Balık 2006; Şen et al.,1996; Duman et al., 2003. Considering that, energy amounts are commonly associated with the fish fat content, the highest fat amount was found in winter and the energy value was also at the highest in this season. Shabut’s average copper (Cu), zinc (Zn), iron (Fe) phosphorus (P) and calcium (Ca) values according to seasons are displayed on Table 2.
Table 2: Average amount of mineral substances in Shabut (Barbus grypus) according to seasons (mg/100g)

<table>
<thead>
<tr>
<th>Season</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
<th>P</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>0.36±0.12a</td>
<td>0.81±0.02a</td>
<td>0.61±0.05a</td>
<td>305.9±4.51a</td>
<td>42.79±3.01a</td>
</tr>
<tr>
<td>Winter</td>
<td>0.08±0.00b</td>
<td>1.07±0.04b</td>
<td>0.13±0.02b</td>
<td>252.7±2.94b</td>
<td>12.38±2.06b</td>
</tr>
<tr>
<td>Spring</td>
<td>0.18±0.01a</td>
<td>1.37±0.03b</td>
<td>1.28±0.08a</td>
<td>263.3±4.54a</td>
<td>31.38±3.21a</td>
</tr>
<tr>
<td>Summer</td>
<td>0.24±0.01a</td>
<td>0.95±0.05a</td>
<td>0.73±0.11a</td>
<td>237.4±4.59a</td>
<td>65.24±3.21a</td>
</tr>
</tbody>
</table>

Seasonal average 0.21±0.12 1.05±0.23 0.68±0.47 264.82±29.37 37.95±22.1

Values are shown as means ± SD of triplicate measurements.
Mean values in the same row having the same superscript are significantly different (P<0.05).

As displayed in Table 3, the highest fatty acid levels found in Shabut throughout all seasons were 16:0, 18:1, 22:6 n–3 ve 20:5 n–3. Palmithic acid (C 16:0) of the saturated fatty acids (SFA) was observed as the primary fatty acid which remained predominant in Shabut in all seasons. In many studies carried out by researchers such as Rahman et al. (1995), Haliloğlu et al. (2002), Çelik et al. (2005) and Zlatanos...
and Laskaridis (2007) it was notified that the predominant primary saturated fatty acid (SFA) in fresh water fish was palmitic acid.

Through the study, oleic acid (C18:1), a monounsaturated fatty acid type (MUFA), was observed as the predominant primary fatty acid throughout four seasons. Palmitoleic acid (C16:1) was identified as the secondarily important monounsaturated fatty acid. In many studies carried out in order to determine the fatty acid composition of different fresh water fish, it has been revealed that the predominant characteristic MUFA’s are oleic acid and palmitoleic acid (Oliveira et al., 2003; Çelik et al., 2005; Gonza’lez et al., 2006; Güler et al. 2008; Suloma et al. 2008; Łuczyński et al. 2008; Akpınar et al. 2009; Osibona et al. 2009).

Through the study, C22:6 n–3 (DHA) and C20:5 n–3 (EPA) of polyunsaturated fatty acids were identified as the predominant primary fatty acids throughout four seasons. Information stating that DHA’s and EPA’s were predominant in fresh water fish out of total PUFAs was similarly reported by many researchers (Oliveira et al., 2003; Çelik et al., 2005; Sushchik et al., 2007; Güler et al., 2008, Łuczyński et al., 2008). The amino acid amounts in Shabut according to seasons are displayed in Table 4.

Table 4: The seasonal amino acid amounts (mg/100g) in Shabut (Barbus grypus)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Seasonal average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine (Ala)</td>
<td>872.00±8.41a</td>
<td>1233.85±15.48b</td>
<td>1025.70±29.27b</td>
<td>929.70±9.14a</td>
<td>1015±158.89</td>
</tr>
<tr>
<td>Glycine (Gly)</td>
<td>687.10±9.14a</td>
<td>1053.05±20.01b</td>
<td>933.00±25.73b</td>
<td>638.50±8.36a</td>
<td>827.91±197.85</td>
</tr>
<tr>
<td>*Valine (Val)</td>
<td>845.70±4.12a</td>
<td>1276.95±1.62b</td>
<td>1066.60±0.14c</td>
<td>882.90±2.15a</td>
<td>1018.03±197.78</td>
</tr>
<tr>
<td>*Leucine</td>
<td>1148.8±11.56a</td>
<td>1835.65±18.87b</td>
<td>1674.05±23.40b</td>
<td>1233.60±9.05a</td>
<td>1473.02±333.84</td>
</tr>
<tr>
<td>*Isoleucine</td>
<td>858.10±9.25a</td>
<td>1230.3±8.34b</td>
<td>1050.10±10.46c</td>
<td>892.0±7.40a</td>
<td>1007.62±170.41</td>
</tr>
<tr>
<td>*Threonine</td>
<td>756.10±6.41a</td>
<td>999.5±7.77b</td>
<td>844.00±11.59g</td>
<td>763.80±7.10a</td>
<td>840.85±112.99</td>
</tr>
<tr>
<td>Serine (Ser)</td>
<td>553.30±3.84a</td>
<td>769.05±1.06b</td>
<td>678.05±2.61c</td>
<td>579.80±2.10a</td>
<td>645.05±98.55</td>
</tr>
<tr>
<td>Proline (Pro)</td>
<td>562.80±4.02a</td>
<td>829.05±8.13b</td>
<td>769.95±7.42c</td>
<td>575.10±5.06a</td>
<td>684.2±135.40</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>2341.4±7.63a</td>
<td>2376.55±12.09b</td>
<td>3076.80±3.81d</td>
<td>2054.40±6.23c</td>
<td>2462.3±434.30</td>
</tr>
<tr>
<td>*Methionine</td>
<td>394.70±3.58a</td>
<td>617.45±10.68b</td>
<td>264.90±0.84c</td>
<td>425.80±4.54d</td>
<td>432.4±146.10</td>
</tr>
<tr>
<td>Hydroch-l-proline</td>
<td>100.50±5.36a</td>
<td>135.45±3.04a</td>
<td>173.30±6.08b</td>
<td>57.00±4.41c</td>
<td>166.5±49.60</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>2272.50±14.35a</td>
<td>2286.65±7.84a</td>
<td>2739.30±16.66b</td>
<td>2242.50±16.01c</td>
<td>2385.2±236.70</td>
</tr>
<tr>
<td>*Phenylalanine</td>
<td>476.40±9.24a</td>
<td>897.45±8.27b</td>
<td>787.70±30.12c</td>
<td>493.80±15.14d</td>
<td>663.8±211.30</td>
</tr>
<tr>
<td>*Lysine (Lys)</td>
<td>1369.10±14.06b</td>
<td>1604.6±14.21b</td>
<td>1225.00±36.76c</td>
<td>1501.70±34.7d</td>
<td>1425.1±164.60</td>
</tr>
<tr>
<td>*Histidine</td>
<td>357.20±3.74a</td>
<td>700.9±5.03b</td>
<td>337.15±1.48c</td>
<td>409.10±3.54c</td>
<td>449.9±170.10</td>
</tr>
<tr>
<td>Tyrosine (Tyr)</td>
<td>647.10±11.41a</td>
<td>1117.9±5.11b</td>
<td>474.45±15.20d</td>
<td>669.70±8.17a</td>
<td>727.3±274.60</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arginine (Arg)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Essential amino acids

Mean values in the same rows having the same superscript are significantly different (P < 0.05). Values are shown as means ± SD
Aspartic acid of the non-essential amino acids (Asp) and glutamic acid (Glu) were revealed as the amino acids with the highest levels in all seasons, while lysine (Lys), leusine (Leu) and valine (Val) were reported as the essential amino acids with the highest amounts. Similar results were reported for many fresh water species by many researchers (Adeyeye 2009; Kaya et al., 2008; González et al., 2006).

In conclusion, it is revealed that Shabut has a high meat efficiency containing protein, fatty acids and amino acids, besides being a species rich in mineral content such as Cu, Zn, and Fe.

Acknowledgements
This Research Project was supported by Adiyaman University Research Foundation (Project No: KMYO BAP–2008/1).

References

Haliloglu, H. I and Aras, N. M., 2002. Comparison of muscle fatty acids of three trout species (*Salvelinus alpinus*, *Salmo trutta fario*, *Oncorhynchus mykiss*) raised under the same conditions. *Turkish

Olgunoğlu, İ. A., Artar E. and Olgunoğlu M.P., 2009. The fisheries situation and economic fish species caught in Adıyaman province. Journal Agriculture Faculty of Harran University, 13 (2), 29- 34. (in Turkish)

Philippines 8th International Symposium on Tilapia in Aquaculture. 921–932.

