Efficacy of clove oil, benzocaine, eugenol, 2-phenoxyethanol as anaesthetics on shabbout fish (Barbus grypus Heckel, 1843)

ÖĞRETMEN F. 1; GÖLBASI S. 2; KUTLUYER F. 3*

Received: August 2013 Accepted: September 2014

Abstract
To our knowledge, no previous anaesthetic experiments are conducted on shabbout fish. The results from the present study indicated that the induction times decreased significantly as the doses increased in all the anaesthetics (p<0.05). Induction and recovery times were significantly affected by the interaction between concentration and anaesthetic (p<0.05). The effective doses were: 25 and 50 µL L⁻¹ at 24°C clove oil and for eugenol, 50 mg L⁻¹ for benzocaine and 500 µL L⁻¹ for 2-phenoxyethanol. In conclusion, the four anaesthetic agents could be used as sedatives in culture of shabbout fish.

Keywords: Shabbout fish, Barbus grypus, Herbal medicines, Chemical anaesthetics.

1-Muğla Sıtkı Koçman University, Faculty of Fisheries and Aquaculture, 48000, Muğla, Turkey.
2-General Directorate of State Hydraulic Works, Fish Production Station Atatürk Dam Lake, Urfa, Turkey.
3-Tunceli University, Fisheries Faculty, 62000, Tunceli, Turkey.
*Corresponding author’s E-mail: filizkutluyer@hotmail.com.
Introduction
The anaesthetics are very important for aquaculture because they minimize stress in aquaculture procedures such as the selection of fish, their measurement, sampling, labelling, transportation, artificial insemination and surgery (Hseu et al., 1998; Weber et al., 2009). Furthermore, it is an important process in terms of various fish enhancement programmes, commercial fisheries and the fish-farming industry without damaging their health or commercial value. In research and aquaculture, chemical anaesthetics have been most widely used (Bell, 1964, 1987; Iwama and Ackerman, 1994; Altun and Danabaş, 2006; Altun et al., 2009; Weber et al., 2009). 2-phenoxyethanol is widely used for transporting live fish because it is cheap, reliable and efficient and its active ingredient is ethylene glycol monophenyl ether (Gilderhus and Marking, 1987; Weyl et al., 1996; Weber et al., 2009; Uçar and Atamanalap, 2010). Benzocaine (ethylaminobenzoate) the ethyl ester of p-aminobenzoic acid, was used as a central nervous system anaesthetic (Hseu et al., 1998; Pramod et al., 2010; Zahl et al., 2011; Ghanawi et al., 2013). Eugenol (C10H12O2) is a phenylpropene, an allyl chain-substituted guaiacol and the major constituent (70 to 90 percent by weight) of clove oil (Akbari et al., 2010). Clove oil is derived from Eugenia caryophyllate tree, which contains methyleugenol, eugenol and isoeugenol (Isaacs, 1983; Soto and Burhanuddin, 1995). Recently, eugenol and clove oil have been widely used in aquatic animals due to their efficacy and being inexpensive (Weber et al., 2009; Akbari et al., 2010; Uçar and Atamanalap, 2010; Ghanawi et al., 2013).

The shabbout fish (B. grypus) is a Cyprinid fish species which inhabits naturally in Euphrates and Tigris Rivers of Turkey, Syria and Iraq (Oymak et al., 2009). This large fish is abundant and commercially important for regional fishery. It is commonly called barb or shabbout, also spelled shabboot or shabut (Sahinoz et al., 2007). It is a potential freshwater species for aquaculture because of their delicate flavor and rich nutritional value. Thus far, a great deal of past research has focused on anaesthesia of fish species. However, to our knowledge, there are no reports on the effects of anaesthetics on the shabbout fish (B. grypus). In this framework, this study was conducted for the comparison of the efficacy of four anaesthetics (clove oil, eugenol, benzocaine, and 2-phenoxyethanol) in the shabbout fish.

Material and methods
Fish
This study was performed in June 2011 at the General Directorate of State Hydraulic Works, Fish Production Station Atatürk Dam Lake, Urfa, Turkey. Six years old fish (n=72; 750.26±126.97 g, 45.73±2.81 cm mean±SD) were obtained from earthen ponds. The first shabut production and adaptation to earthen ponds were done
with this method in 2006 at this farm and fish transferred to the hatchery in an aerated container. The fish were acclimated in twelve 5000 L concrete ponds supplied with constantly running freshwater for 1 week. Each sedative concentration was prepared and tested with 6 fish at a different aquarium. Experiments were performed in triplicate. Each replicate consisted of six fish exposed separately. The fish were fed with commercial pellet feed for 2 weeks and feeding was terminated 24 h before the experiment. No mortality was observed during the acclimatization period. The oxygen and pH were measured with a multiparameter (Hach HQ40D). Temperature was measured with a digital thermometer twice a day (8:00-9:00, 16:00-17:00). The temperature of the incoming water was 24±0.1°C. pH and dissolved oxygen value in the groups were 8.23±0.20 and 8.2±0.11 mg L⁻¹.

Anaesthetic agents

Four anaesthetic agents, clove oil (Biopont, Budapest, Hungary), eugenol (Merck, KGaA, Darmstadt, Germany), benzocaine and 2-phenoxyethanol (Sigma Aldrich Co., St. Louis, USA) were used. Clove oil was initially dissolved in 94% ethanol (ratio of clove oil: ethanol, 1:9) because it is poorly soluble in water. Eugenol is the active ingredient of clove oil which is not completely soluble in water (at low temperatures<15°C), it is necessary to dilute the product 1:10 in 95% ethanol. 2-phenoxyethanol is soluble in water (26.7 g L⁻¹) at 25°C but readily soluble in ethanol. Benzocaine, being insoluble in water, was dissolved in a few drops of ethanol before mixing into the transporting medium (Zahl *et al*., 2011).

Experimental design

In this study, three stages of induction and three stages of recovery were considered. The different stages (I, II, III) of anaesthesia and recovery in shababout fish (*B. grypus*) are described in Table 1 (Gullian and Villanueva, 2009). The following doses of each agent were evaluated: clove oil and eugenol (25, 50, 75 µL L⁻¹), benzocaine (25, 50, 75 mg L⁻¹), 2-phenoxyethanol (500, 1000, 1500 µL L⁻¹). Six fish were used for each concentration tested in order to evaluate the time required for the induction of anaesthesia. Animals were considered to have recovered when they demonstrated normal swimming and reaction to the external stimuli (Silva *et al*., 2012).

Statistical analysis

Data are presented as means±standard deviation of the mean (SD). The differences among means were analysed by non-parametric Mann-Whitney’s U tests following Kruskall-Wallis’s test. Differences were considered significant at *p*<0.05. All analyses were performed with the SPSS 14.0 statistical package.
Table 1: Stages of induction of anaesthesia and recovery in the shabbout fish (Gullian and Villanueva 2009).

<table>
<thead>
<tr>
<th>Stages</th>
<th>Description</th>
<th>Characteristic behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction</td>
<td>II</td>
<td>Loss of balance</td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td>Total loss of equilibrium</td>
</tr>
<tr>
<td></td>
<td>I3(I)</td>
<td>Total loss of reflexes and movement</td>
</tr>
<tr>
<td></td>
<td>I4</td>
<td>Death</td>
</tr>
<tr>
<td>Recovery</td>
<td>R1</td>
<td>Start of movement</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>Regular breathing</td>
</tr>
<tr>
<td></td>
<td>R3(R)</td>
<td>Total recovery of equilibrium</td>
</tr>
</tbody>
</table>

*stage I4 has not been observed in this study.

Results

Induction and recovery times for each anaesthetic agent (clove oil, eugenol, benzocaine, and 2-phenoxyethanol) in the shabbout fish (B. grypus) are shown in Fig. 1. Data here reported that the effective doses were: 25 and 50 µL L\(^{-1}\) at 24 °C for clove oil and for eugenol, 50 mg L\(^{-1}\) for benzocaine and 500 µL L\(^{-1}\) for 2-phenoxyethanol. Recovery time of clove oil, eugenol, benzocaine, and 2-phenoxyethanol were 48 to 160 s; 79 to 199 s; 12 to 137 s and 27 to 131 s, respectively. Induction and recovery time were significantly affected by the interaction between concentration and anaesthetic (p<0.05).

Discussion

Effective doses of the same anaesthetic often differ in fish species. These differences in principle result from two causes, biological factors (e.g. species, the stage of life cycle and age, size and weight, lipid content and disease status) or environmental factors (temperature, hardness, salinity and pH), or their interaction. Although, there is a lack of information in the literature on the effect of anaesthetic on the shabbout fish (B. grypus), numerous investigations have been conducted on different fish species. At the termination of experiments, faster induction and recovery of anaesthesia were obtained from the 2-phenoxyethanol treatment at concentration of 1500 µL L\(^{-1}\) and the benzocaine treatment at concentration of 25 mg L\(^{-1}\), respectively. All values in the potential anaesthetic applications for different fish species were compared with the present findings Table 2.

An anaesthetic should act effectively in less than 3 minutes and the recovery should occur within 5 minutes in clean water for farmed fishes (Marking and Meyer, 1985; Bell, 1987).
Table 2: Summary of potential anaesthetic applications for fish species and comparisons with the present study results.

<table>
<thead>
<tr>
<th>Species</th>
<th>Anaesthetic</th>
<th>Effective dosage</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncorhynchus nerka</td>
<td>Clove oil</td>
<td>50 mg L⁻¹</td>
<td>Woody et al., 2002</td>
</tr>
<tr>
<td>Sparus aurata</td>
<td>Clove oil</td>
<td>55 mg L⁻¹</td>
<td>Mylonas et al., 2005</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>Clove oil</td>
<td>30-50 mg L⁻¹</td>
<td>Hajek et al., 2006</td>
</tr>
<tr>
<td>Anguilla anguilla</td>
<td>Clove oil</td>
<td>0.050 mL L⁻¹</td>
<td>Altun et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Eugenol</td>
<td>3.375 mL L⁻¹</td>
<td></td>
</tr>
<tr>
<td>Solea senegalensis</td>
<td>Clove oil</td>
<td>30 mg L⁻¹</td>
<td>Weber et al., 2009</td>
</tr>
<tr>
<td></td>
<td>2-phenoxyethanol</td>
<td>600 mg L⁻¹</td>
<td></td>
</tr>
<tr>
<td>Puntius filamentosus</td>
<td>Benzocaine</td>
<td>≥20 mg L⁻¹</td>
<td>Pramod et al., 2010</td>
</tr>
<tr>
<td>Carassobarbus luteus</td>
<td>Clove oil</td>
<td>75 mg L⁻¹</td>
<td>Gokcek and Ogretmen 2011</td>
</tr>
<tr>
<td>Acipenser persicus</td>
<td>Clove oil</td>
<td>400 mg L⁻¹</td>
<td>Bagheri and Imanpour 2011</td>
</tr>
<tr>
<td>Acipenser gueldenstaedtii</td>
<td>Clove oil</td>
<td>0.35, 0.50 and 0.75 g L⁻¹</td>
<td>Akbulut et al., 2011</td>
</tr>
<tr>
<td>Siganus rivulatus</td>
<td>Clove oil</td>
<td>70 mg L⁻¹</td>
<td>Ghanawi et al., 2011</td>
</tr>
<tr>
<td>Barbus grypus</td>
<td>Clove oil</td>
<td>25 and 50 µL L⁻¹</td>
<td>Present study</td>
</tr>
<tr>
<td></td>
<td>2-phenoxyethanol</td>
<td>500 µL L⁻¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzocaine</td>
<td>50 mg L⁻¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eugenol</td>
<td>25 and 50 µL L⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Induction and recovery times for each anaesthetic agent (a) clove oil, b) eugenol, c) benzocaine, and d) 2-phenoxyethanol) in the shabbout fish (Barbus grypus).
Our results indicated that induction time at all concentrations of clove oil, eugenol, benzocaine, and 2-phenoxyethanol ranged from 18 to 117 seconds, except for the benzocaine at 25 µL L⁻¹ concentration which was considerably more than the upper limit. In addition, the findings indicated that the induction times decreased significantly as the doses increased in all the anaesthetics.

Recovery time were positively correlated with concentration of anaesthetics (Smit and Hattingh, 1979; Limsuwan et al., 1983; Hseu et al., 1994; Weyl et al., 1996; Velisek et al., 2005; Sudagara et al., 2009; Gullian and Villanuera, 2009). Terzioglu (2001) found that recovery times increased with increasing the concentration of 2-phenoxyethanol. On the other hand, some researchers determined that increasing the concentration did not affect the recovery time (Mattson and Riple, 1989; Malmstrom et al., 1993). In this study, we found a linear correlation between the concentration value and the recovery time, although higher concentrations of these four anaesthetic agents achieved shorter induction times. Additionally, it was determined that induction and recovery times are related to the anaesthetic concentration.

Anesthetic should also have non-toxic side effects for either the fish or the handler. In this study, no death or other adverse effects occurred following recovery from anaesthesia. Clove oil and eugenol were harmless for skin and safe handling features as organic anaesthetics. On the contrary, it was observed that Benzocaine and 2-phenoxyethanol could be harmful for the user if contacted with eye or skin.

In conclusion, the results obtained in the present study clearly demonstrate that clove oil, eugenol, benzocaine and 2-phenoxyethanol satisfy these criteria and suggest that they could be considered as a fish anaesthetic. Therefore, our results indicated that all anaesthetics could be used to minimize the stress associated with aquaculture procedures.

References

Uçar, A. and Atamanalp, M., 2010. The effects of natural (clove oil) and synthetical (2-phenoxyethanol) anesthesia substances on hematology parameters of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario). Journal of Animal and Veterinary Advances, 9(14), 1925-1933.