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This study examined the performance of rainbow trout 

(Oncorhynchus mykiss) farms in the Sistan region of Iran 

during 2023-2024, using the super-efficiency envelopment 

analysis technique.  Data were collected through structured 

questionnaires, and technical efficiency was evaluated 

using the basic Data Envelopment Analysis (DEA) 

approach. The findings were then compared with the 

super-efficiency DEA model. The average technical 

efficiency was 63.50% (ranging from 0.21 to 1) under the 

constant return to scale model and 79.35% (ranging from 

0.54 to 1) under the variable return to scale model. 

Additionally, average scale efficiency was 76.1% (ranging 

from 0.38 to 1). Only 20% of the farms achieved full 

efficiency, exhibiting significant variations in technical 

efficiency. The results demonstrated that discrepancies in 

input consumption management were the primary factor 

contributing to technical inefficiency. Therefore, 

optimizing input management is critical for enhancing 

efficiency in these aquaculture systems. 
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Introduction 

Marine fish stocks are a vital part of the 

global food system. However, overfishing 

is on the rise, raising widespread concerns 

about the depletion of fish stocks in most 

parts of the world (Hilborn et al., 2020). 

According to the Food and Agriculture 

Organization (FAO) report in 2025, 35.5% 

of global marine fish stocks are currently 

being exploited at levels beyond their 

biological sustainability capacity, meaning 

these stocks are at risk. This situation is 

particularly difficult in certain regions, 

especially in the southeastern Pacific Ocean 

and the Mediterranean and Black Seas, 

where only 46 to 47.4% of stocks are 

sustainably harvested. Furthermore, reports 

indicate that in some areas, fish stocks have 

decreased to less than 10% of their original 

levels, which is referred to as “approaching 

extinction” or “severe depletion” (FAO, 

2025). Today, the aquaculture industry 

holds a significant place in the global 

economy, particularly in food security, 

trade, job creation, and rural poverty 

reduction. Aquaculture, which is projected 

to reach 106 million tons by 2030 (FAO, 

2022), is expected to play a crucial role in 

bridging the gap between fish supply and 

the growing global demand (Lubchenco et 

al., 2020). Research has shown that 

compared to other agricultural sectors, 

aquaculture produces fewer environmental 

wastes and damages, and focusing on it 

could significantly contribute to economic 

development and food security. 

Additionally, food security has always been 

of great importance in developing 

countries. In line with food security and 

governments' efforts to preserve public 

health, increasing the share of aquatic 

products in people's diets is crucial (Farashi 

et al., 2019).  However, the growth of this 

industry faces a wide range of 

environmental concerns (Naylor et al., 

2000; Hall et al., 2011) stemming from the 

ecological impacts of its inputs and 

resources (Waite et al., 2014; Ahmed and 

Thompson, 2019). These challenges 

include water pollution, increased 

consumption of natural resources for fish 

feed, habitat destruction, and the 

transmission of diseases and parasites, 

which can negatively affect aquatic 

ecosystems.  Therefore, ensuring the 

sustainability of aquaculture is essential, as 

it can improve environmental productivity, 

environmental compatibility, profitability, 

and the social benefits of this industry (Sun 

et al., 2020). 

Cold-water aquaculture is a fundamental 

and expanding sector of the aquaculture 

industry, which has captured the attention 

of countries and global organizations 

responsible for improving nutrition and 

alleviating national poverty 

(Mohammaditabar et al., 2019). Among 

cold-water fish, rainbow trout 

(Oncorhynchus mykiss)  is considered a 

protein-rich source (Fry et al., 2018). In 

2018, global rainbow trout production in 

domestic and freshwater settings reached 

664,854 tons, with Iran accounting for 26 

percent of this figure. Iran has over 50 years 

of experience in aquaculture, particularly in 

freshwater fish production. In 2018, it 

ranked second in the Middle East and 19th 

globally in aquaculture. Total seafood 

production was approximately 72,000 tons 

in 1978/79, including nearly 4,935 tons 

from aquaculture. However, this amount 

significantly rose to 1,282,475 tons in 
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2019/20, comprising 527,747 tons from 

aquaculture and 559,095 tons from fishing. 

The high potential for aquaculture across all 

provinces, combined with the attractiveness 

of investment in this sector, alongside 

efforts to promote seafood consumption 

and raise public awareness about this 

valuable protein source, can drive the 

growth and development of this industry 

(Abdolhay and Asgari, 2020). 

Given the limitations of food production 

resources and the increasing food demands 

of human communities, developing 

countries can explore and reduce the gap 

among producers under similar conditions 

by assessing farmers’ efficiency. Moreover, 

the scarcity of production factors forms the 

basis of economic science. The availability 

of production inputs, both human and non-

human, is limited under any circumstances 

at any time. Consequently, evaluating 

farmers’ efficiency can play a key role in 

analyzing agricultural policies (Tozer, 

2010). Efficiency is an essential factor in 

enhancing the productivity of production 

inputs in developing countries. These 

countries face resource shortages and 

limited opportunities for the development 

and adoption of better technologies on one 

hand, while failing to efficiently utilize 

existing technologies on the other. 

The first research on estimating 

efficiency in the aquaculture sector was 

conducted by Gunaratne and Leung over 

two consecutive years, 1996 and 1997 

(Gutiérrez et al., 2020). In subsequent 

years, numerous studies focused on 

assessing technical, allocative, and 

economic efficiency in this sector 

(Hassanpour et al., 2010; Alam, 2011; 

Nielsen, 2011). Additionally, some 

researchers employed the super-efficiency 

method to evaluate the performance and 

productivity of various sectors, including 

agriculture and aquaculture. A selection of 

these studies is reviewed below. 

Pham (2010) conducted a thesis on the 

technical efficiency of improved extensive 

shrimp farms in Ca Mau province, 

Vietnam, estimating the mean technical 

super-efficiency of these farms. Using the 

cost minimization method with variable 

returns to scale through DEA, the study 

revealed that wetland area, farmers' 

experience, and their technical knowledge 

were the most significant factors positively 

influencing productivity and improving 

efficiency in non-centralized farms. Wang 

et al. (2024) employed three-stage DEA 

and SBM models to evaluate the technical 

and environmental efficiency of inland 

aquaculture. The results indicated that the 

average efficiencies were below the 

optimal level, suggesting a considerable 

potential for improvement. Le et al. (2022) 

employed the Cobb–Douglas stochastic 

production frontier model to examine the 

determinants of inefficiency in intensive 

and extensive shrimp aquaculture systems 

in Vietnam. The results showed that 

climatic conditions, education, and 

management practices play significant roles 

in determining efficiency levels. Moreover, 

the length of the culture period affects 

efficiency differently across systems, while 

disease occurrence and farm location are 

key factors contributing to efficiency 

reduction. Long et al. (2022) applied a two-

stage bootstrap DEA model to assess cost 

efficiency in intensive white-leg shrimp 

farms. The results showed that allocative 

inefficiency was the main source of cost 
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inefficiency, and adjusting input levels—

especially feed, chemicals, and 

fingerlings—could improve efficiency. 

Yang and Wang (2024) utilized the non-

expected outcome super-efficiency slacks-

based measure (SBM) and global 

Malmquist–Luenberger index models for 

the static evaluation of green development 

efficiency and its dynamic analysis in the 

marine aquaculture industry across nine 

coastal provinces in China from 2012 to 

2021. They reported that the mean static 

efficiency of green production in the marine 

aquaculture industry was 0.705 over this 

period. The southern marine economic zone 

demonstrated the highest green 

development static efficiency, with a 

stepped distribution pattern descending in 

the order of “south-north-east.” Input-

output redundancy analysis identified 

redundant inputs and carbon emissions as 

the main factors contributing to the decline 

in the static efficiency of the marine 

aquaculture industry in China. Huang et al. 

(2021) assessed the efficiency of water and 

other resource usage for cultivation, 

forestry, animal farming, and fishing across 

various regions of China using the super-

efficiency SBM analysis method. The 

findings showed that the overall 

productivity of agricultural water usage 

exhibited a fluctuating downward trend, 

with notable regional disparities. Lu et al. 

(2021) employed the super-DEA method to 

evaluate agricultural water use efficiency in 

52 cities in northwest China between 2000 

and 2018. According to the results, the 

overall efficiency displayed a steady 

upward trend in the studied region; 

however, by 2018, only a limited number of 

cities had successfully achieved efficient 

agricultural water usage. Clear differences 

in efficiency were observed among the 

cities. 

The literature review indicates that various 

efficiency methods have been utilized to 

evaluate the performance of fish farms. 

Since the present research aimed to rank 

cold-water fish producers, it employed the 

super-efficiency DEA method, derived 

from the basic non-parametric method, 

through a linear programming model. 

Aquaculture thrived in the Sistan region 

due to the inability to fish from the 

International Hamoun Wetland following 

prolonged droughts in the 1990s. 

According to the General Fishing 

Department of Sistan, The Sistan region, 

which hosts over 3,000 aquaculture units, 

serves as a fish-production hub in the 

southeast of Iran. There were 99 rainbow 

trout farms in this region in 2022/23, 

producing 146.266 tons of rainbow trout. 

However, in 2023/24, the number of farms 

decreased to 90 units, producing 162.336 

tons of trout.This decline is primarily 

linked to the prolonged droughts and the 

significant reduction in water levels of the 

Hamoun Wetland, which directly impacted 

the availability of water for aquaculture. 

The depletion of the Hamoun Wetland, 

which has been a crucial water resource in 

the region, forced many farms to shut down 

or reduce production, contributing to the 

overall decrease in the number of farms in 

the area. The study population included all 

aquaculture units in the region, from which 

20 farms were selected by simple 

randomization to complete the research 

questionnaire. 
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Materials and methods 

The method for calculating efficiency using 

Data Envelopment Analysis (DEA) was 

first conceptualized by Farrell (1957) and 

formally developed by Charnes et al. 

(1978) (Banker et al., 1984).  This approach 

estimates the boundary production function 

using linear programming;  hence, it is also 

referred to as a linear programming 

method. Being non-parametric, this method 

does not require the determination of the 

production function’s form, thereby 

reducing the risk of model specification 

error. These models can be either output-

oriented or input-oriented. In this method, 

rather than explicitly determining the 

boundary production function, the 

performance of enterprises with the highest 

output/input ratio is considered the 

efficiency boundary. Subsequently, all 

observed units are positioned on or below 

this boundary. In this way, the efficiency of 

each production unit is assessed relative to 

the efficiency of all production units . 

Efficiency is computed as follows: 

Assume that there are 𝑁 inputs and 𝑀 

outputs for each sample unit. The vectors 𝑥𝑖 

and 𝑞𝑖 represent the input and output 

quantities for the 𝑖th unit, respectively. 

(X)N×I is the input matrix, and (Q)M×I is 

the output matrix for all units. The ratio of 

total outputs to total inputs can then be 

calculated, representing the overall 

productivity level: 

     (1 

So that the vector 𝑈 represents the weights 

of the outputs, and the vector 𝑉 represents 

the weights of the inputs. A decision-

making unit (DMU) can set maximizing the 

above value as its objective. Thus, we have: 

   (2 

The data envelopment level may exhibit 

either constant or variable returns to scale. 

 

Constant return to scale (CRS) model 

CRS is an input-oriented model proposed 

by Charnes et al. (1978), where the CRS 

pattern is expressed as follows:  

   (3 

Where, θ represents the efficiency of each 

unit, with values ≤1. The vectors 𝑥𝑖 and 𝑞𝑖 

denote the input and output quantities for 

the 𝑖th unit, respectively. The model can 

also be represented as follows:  

  (4 

Where, Dot(𝑥𝑜𝑡, 𝑦𝑜𝑡) serves as the distance 

function (measuring the distance between 

the unit and the efficiency boundary), 𝑆− is 

the input shortage variable, and 𝑆+ is the 

output shortage variable. These variables 

are incorporated into the model to 

transform unequal constraints into equal 

constraints. Additionally, 𝜆 represents 

constants, which reflect the weights of the 

reference set. To address the issue of zero 

weights, the non-Archimedean number 𝜀 is 

introduced as a lower bound to prevent the 

input and output weights from becoming 

zero.  
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Variable return to scale (VRS) model 

The CRS model is applicable when all 

enterprises operate optimally. However, 

factors such as imperfect competition and 

financial constraints hinder enterprises 

from reaching optimal performance. To 

address this limitation, Banker et al. (1984) 

extended the CCR model by introducing the 

VRS assumption, resulting in what is 

commonly known as the BCC model. This 

was achieved by adding the convexity 

constraint Σj
nλj = 1 (Charnes et al., 1978). 

The VRS model is expressed as follows:  

  (5 

These two models categorize DMUs into 

efficient and inefficient groups and can 

rank inefficient DMUs. Nonetheless, all 

DMUs located on the boundary have an 

efficiency score of one, making it 

impossible to differentiate among them. To 

overcome this limitation, Andersen and 

Petersen (1993) introduced the super-

efficiency method, which identifies the 

most efficient DMU and assesses the extent 

to which an efficient DMU can increase (or 

decrease) its inputs (or outputs) while 

maintaining its efficiency. 

 

Non-parametric super-efficiency method 

This method ranks inefficient DMUs like 

the base method. However, efficient DMUs 

can achieve efficiency levels greater than 

one, allowing for their ranking as well. The 

arithmetic model for super-efficiency is as 

follows:  

    (6 

Where, 𝑥𝑖𝑗 and 𝑦𝑟𝑗 represent the 𝑖th input 

and 𝑟th output of the 𝑗th DMU, 

respectively. 𝑆− denotes the input-related 

shortage, and 𝑆+ represents the output-

related shortage. The non-Archimedean 

number 𝜀 is again employed as a lower 

bound to prevent the weights of inputs and 

outputs from becoming zero. For further 

details, readers are referred to Chen (2005), 

which explains the performance of the 

super-efficiency model with a VRS 

assumption using a straightforward 

example.  

As shown in Figure 1, adapted from 

Chen (2005), five DMUs (A, B, C, D, and 

H), each with one input and one output, are 

evaluated. According to the super-

efficiency model under the VRS 

framework, DMU D is unable to increase 

its input usage as expected. Despite being 

an efficient unit under VRS, it cannot retain 

any inputs beyond the input level H’ (which 

corresponds to the usage level of input H). 

Since H demonstrates the highest level of 

input utilization, it must be evaluated in 

comparison to D. Conversely, DMU B can 

increase its input utilization and reach point 

B’ (the projection of point B on the convex 

combination of A and C). This expected 

and feasible increase in input utilization 

compared to other DMUs enhances the 

efficiency of DMU B, classifying it as a 

super-efficient unit.
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Figure 1: The super-efficiency with a variable return to scale (VRS) assumption (Chen, 2005). 

 

In this study, the performance of cold-water 

fish producers was initially assessed using 

the efficiency index and fundamental DEA 

models, including those based on CRS and 

VRS assumptions. Subsequently, scale 

efficiency was calculated separately, 

followed by the application of super-

efficiency DEA. All these models were 

approached in an input-oriented manner, 

meaning the farms’ technical efficiency 

was measured assuming a fixed level of fish 

production alongside a proportional 

reduction in input utilization. The data were 

further analyzed using IRS and DRS 

models. The return-to-scale type for each 

farm was identified by comparing the 

efficiency levels derived from the variable-

return model with those obtained from the 

two recent models. Additionally, the actual 

(mean) consumption of inputs and their 

optimal consumption levels were compared 

to determine the percentage of inefficiency 

in input utilization. To compute the optimal 

level of input use (mean optimal use) 

required for achieving the current 

production and efficiency levels of the 

producers, the software-generated 

consumption level for each input was 

subtracted from its mean actual 

consumption level (Ören and Alemdar, 

2006). 

The variables analyzed in this study 

include one output variable (the product) 

and seven input variables. The input 

variables utilized across all models in this 

research were the production area (fish 

farm area) in m² (X1), labor in person-days 

(X2), the initial count of eyed eggs (X3), 

feed consumption rate in grams (X4), and 

medication consumption rate in grams (X5). 

The output variable represented fish 

production (Y). Data analysis and modeling 

were performed using MATLAB. 

 

Results 

Table 1 provides the statistical estimates for 

the dependent and independent variables 

associated with cold-water fish production. 

According to the results, fish production 

ranged from 700 to 3,500 kg, with a mean 

of 1,452.23 kg and a standard deviation 

(SD) of 963.25. The relatively high SD 

indicates substantial variations among the 

farms. Farm areas ranged from 80 to 11,800 

m² (mean: 6,589.21 m²; SD: 1,258.92).
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Table 1: The descriptive statistics for the variables used in the process of cold-water fish production. 

Variables 
Standard 

deviation 
Mean Maximum Minimum CV% Median IQR 

Fish production in kg (Y) 963.25 1452.23 3500 700 66.3 1776.12 1299.82 

Production farm area in m2 

(X1) 
1258.92 6589.21 11800 80 19 6264.60 1690.13 

Labor in person-days (X2) 2.25 9.80 12 3 23 8.65 3.04 

Initial count of eyed eggs 

(X3) 
8569.2 26987.9 35800 4500 32 23568.95 11658.77 

Feed consumption rate in g 

(X4) 
2850 7560.21 29865 3900 37 122.2135 3776.32 

Medication consumption rate 

in g (X5) 
4.23 3.2 22 2 132 7.60 5.70 

The variation in size suggests the presence 

of both very small and relatively large 

farms.  Labor input varied from 3 to 12 

person-days (mean: 9.80; SD: 2.25), 

showing considerable differences among 

the farms, as reflected by a coefficient of 

variation (CV) of about 23%. The count of 

eyed eggs ranged from 4,500 to 35,800, 

with a mean of 26,987.9 and an SD of 

8,569.2. This wide dispersion suggests that 

while some farms operate on a small scale, 

others are significantly larger.  Feed 

consumption rates ranged from 3,900 to 

29,865 g (mean: 7,560.21 g; SD: 2,850). 

The variation in feed use indicates 

differences in farm size, productivity, and 

management strategies. Medication use 

ranged from 2 to 22 g, with a mean of 3.2 g 

and an SD of 4.23. This finding shows that 

medication is used at very low levels in 

some farms and at much higher levels in 

others, potentially reflecting differences in 

hygiene and disease management practices. 

Table 2 provides an overview of the 

technical efficiency levels of the 

aforementioned models. 

Farms 1, 4, 7, and 11 achieved a score of 

1 across all indicators, indicating that they 

utilized their resources most optimally and 

operated at an optimal scale. The results 

also revealed that most farms experienced 

increasing returns to scale (IRS). In other 

words, an increase in input use in these 

farms would lead to a disproportionately 

higher increase in production, suggesting 

that they can enhance their efficiency by 

scaling up their production. For instance, 

Farm 2 had a scale efficiency of 0.88, while 

its technical efficiency was 0.75 under CRS 

and 0.85 under VRS, implying potential for 

further efficiency improvements through 

expansion. Farm 15 was nearly ideal, with 

an efficiency of 0.95 under CRS, 0.99 under 

VRS, and 0.89 in scale. 

The results regarding the type of return to 

scale indicate the production stage of a farm 

and the policies that could help it move closer 

to an optimal state. If a farm has IRS (e.g., 

Farm 2), it can reach the minimum point on 

the long-term cost function by increasing its 

size. Farms 20, 17, 14, 19, and 13 showed the 

lowest efficiency levels. For instance, Farm 

20 had a technical efficiency of 0.21 under 

CRS, 0.54 under VRS, and 0.38 in scale 

efficiency. This indicates that it uses its 

resources inefficiently and does not optimize 

its production scale. To improve, these farms 

need to adjust their management practices or 

operate on a larger scale.
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Table 2: The efficiency calculated by the data envelopment analysis method with an input-oriented 

assumption. 

Farm 
Scale 

efficiency 

Technical 

efficiency (VRS) 

Technical 

efficiency (CRS) 

Return-to-scale 

type 

1 1 1 1 - 

2 0.88 0.85 0.75 IRS 

3 0.61 0.68 0.42 IRS 

4 1 1 1 - 

5 0.93 0.91 0.85 IRS 

6 0.73 0.71 0.52 - 

7 1 1 1 - 

8 0.93 0.74 0.69 IRS 

9 0.72 0.85 0.62 IRS 

10 0.90 0.92 0.83 IRS 

11 1 1 1 - 

12 0.78 0.61 0.48 IRS 

13 0.63 0.61 0.39 IRS 

14 0.51 0.60 0.31 IRS 

15 0.89 0.99 0.95 IRS 

16 0.73 0.71 0.52 IRS 

17 0.44 0.63 0.28 IRS 

18 0.66 0.84 0.56 IRS 

19 0.49 0.67 0.33 IRS 

20 0.38 0.54 0.21 IRS 
 

The results indicated that only four farms 

(1, 4, 7, and 11) exhibited CRS, while the 

majority (16 out of 20 farms) showed IRS. 

These farms operated at an optimal 

production level, meaning that increasing 

or decreasing inputs would result in a 

proportional change in production. They 

demonstrated higher performance than 

other farms and could serve as a model for 

others. These farms should focus on 

optimizing input usage and enhancing 

quality to improve profitability. However, 

over 80% of fish producers in the region 

exhibited IRS, where a simultaneous 1% 

increase in all inputs would result in more 

than a 1% increase in production. These 

farms were in a phase where increasing 

inputs, such as labor, feed, and farm area, 

would lead to a disproportionately greater 

production increase. These findings suggest 

that most trout farms did not operate 

optimally and could boost productivity by 

expanding their production capacity. Such 

farms should aim to increase their 

production levels, as doing so would reduce 

average costs and improve efficiency 

through scaling up. No farms exhibited 

decreasing returns to scale (DRS). In other 

words, no farms were in a state where 

increasing inputs would lead to reduced 

production, so their expansion would result 

in inefficiency and wastage. 

Table 3 compares the actual input 

consumption rates with their optimal levels 

and highlights the inefficiencies in input 

usage. The results of Table 4 show that farm 

area, with an inefficiency of 0.75%, is 

almost at the optimal level and requires no 

major adjustment.  In contrast, labor, with 

an inefficiency of 12.14%, is among the 

inputs with considerable deviation from the 

optimal level, suggesting that insufficient 

utilization of labor is a limiting factor in 

production.  The initial count of eyed eggs, 
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with an inefficiency of only 0.78%, is the 

closest input to the optimal level, reflecting 

proper management in this area.  For feed 

consumption, an inefficiency of 20.13% 

was observed, which is relatively high. This 

highlights the importance of better feed 

management, as inadequate or untimely 

feeding could adversely affect the growth 

and productivity of the farms.  Finally, 

medication consumption, with an 

inefficiency of 28.12%, showed the largest 

deviation from the optimal level. This 

indicates that medication use is 

significantly below the optimal 

requirement, which may expose farms to 

higher risks of diseases. Therefore, 

improving medication management is 

essential to prevent losses and enhance 

overall farm productivity.  It should be 

noted that the inefficiency values were 

computed using the Slack-Based Measure 

(SBM) model within the DEA framework, 

which accounts for both radial and non-

radial slacks in input usage. 
 

 

Table 3: The comparison of means for input consumption rates and their optimal levels for cold-water fish 

production. 

Input 

Consumption 

rate (mean 

actual level) 

Input 

slacks 

Optimal 

consumption rate 

(mean optimal level) 

Inefficiency 

(%) 

paired 

t-tests 

Production farm area in m2 (X1) 6589.21 50.02 6639.23 0.75 0.38 

Labor in person-days (X2) 9.80 1.11 10.99 12.14 1.12 

Initial count of eyed eggs (X3) 26987.9 213.11 27200.11 0.78 0.95 

Feed consumption rate in g (X4) 7560.21 1521.89 9082.1 20.13 2.57 
Medication consumption rate in g 

(X5) 
3.2 0.91 4.11 28.12 2.25 

 

Table 4 indicates the efficient farms (boundary 

enterprises) that inefficient farms should refer 

to in order to enhance their performance. In 

DEA, boundary farms serve as efficiency 

models for other farms. According to the 

results, Farm 7 received the highest number of 

referrals among the efficient farms, with 11 

referrals. Although all efficient farms achieve 

efficiency scores of 1 in the basic DEA model, 

they differ in the number of referrals from 

inefficient farms. This indicates that some 

efficient farms are more efficient than others, 

despite having the same score. Specifically, 

Farm 7 received the highest number of 

referrals, signifying that it is the best-

performing unit. In other words, it closely 

aligns with the efficiency boundary and serves 

as a more suitable reference for other inefficient 

farms. To enhance their performance, 

inefficient farms should use efficient farms as 

models. For example, Farm 2, which is 

inefficient, needs to compare its performance 

with that of Farms 3, 12, 6, 8, and 9 to improve 

its efficiency. Inefficient farms can approach 

the performance level of boundary farms by 

adopting better management practices, 

optimizing input usage, and increasing 

productivity. 

The super-efficiency model can be used to 

rank boundary DMUs. The findings indicated 

that the efficiency levels of inefficient farms 

remained consistent with those in the previous 

model, leaving their ranking unchanged. In this 

model, efficiency levels ranged from 0.52 to 

4.25, highlighting substantial disparities among 

the fish farms studied. Table 5 presents the 

rankings of several farms in the region, derived 

using the input-oriented super-efficiency 

approach.
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Table 4: Referral of efficient enterprises to the composition of boundary enterprises in the basic input-

oriented data envelopment analysis model (a part of farms). 

DMUs Reference DMUs Repetition DMUs Reference DMUs Repetition 

Farm 1 Farms 9, 20, 11, 8, 3 0 Farm 6 Farm 6 5 

Farm 2 Farms 3, 12, 6, 8, 9 0 Farm 7 Farm 7 11 

Farm 3 Farms 20, 10, 5, 7, 8 0 Farm 8 Farm 8 3 

Farm 4 Farm 4 0 Farm 9 Farm 9 1 

Farm 5 Farms 6, 7, 4, 8, 10 0 Farm 10 Farm 10 0 

 

Table 5: The ranking of some fish farms in the region using the input-oriented super-efficiency approach. 

Farm Rank Super-efficiency Farm Rank Super-efficiency 

11 1 4.25 12 5 0.68 

7 2 3.63 15 6 0.63 

4 3 3.10 9 7 0.58 

1 4 2.58 20 8 0.52 
 

In DEA, all efficient farms have efficiency 

scores of 1. However, the super-efficiency 

model addresses this issue by enabling the 

ranking of efficient farms. Farm 11, with a 

score of 4.25, demonstrated the highest 

super-efficiency and was therefore ranked 

first. In other words, it achieved the best 

performance among all the farms. The 

second and third ranks were assigned to 

Farms 8 and 4, with super-efficiency scores 

of 3.63 and 3.10, respectively. Farms with 

scores below 1 (e.g., Farm 20, which scored 

0.52) exhibited lower efficiency than other 

efficient farms. While all these farms had 

an efficiency score of 1 in the initial DEA 

model, the super-efficiency model 

highlighted performance differences 

among them. Farms with higher super-

efficiency scores (e.g., Farms 11 and 8) 

served as better benchmarks for inefficient 

farms, whereas farms with lower super-

efficiency scores (e.g., Farm 20) were still 

efficient but demonstrated lower 

productivity than the top-performing farms. 

 

Discussion 

This study assessed the performance of 

cold-water fish producers in rainbow trout 

(O. mykiss) farms in the Sistan region, 

calculating their technical efficiency using 

the DEA model under the assumptions of 

CRS and VRS. Additionally, the scale 

efficiency and return-to-scale type of the 

farms were identified. The super-efficiency 

DEA model was employed to rank the 

superior farms. Subsequently, the 

performance of the fish producers based on 

the basic DEA method was compared with 

the results of the super-efficiency DEA. 

The efficient farms (Farms 1, 4, 7, and 11) 

can serve as models for other farms. Most 

farms demonstrated increasing returns to 

scale, indicating that they can enhance their 

efficiency by expanding their production 

scale. Farms with lower efficiency require 

serious revision, as they fail to utilize their 

resources effectively and need to improve 

their managerial and technical strategies. 

Farms that scored higher in the VRS model 

compared to CRS clearly operate at a non-

optimal scale and may be smaller than their 

optimal size. This analysis provides 

valuable insights for policymakers and 

farm owners to make better decisions aimed 

at boosting productivity and increasing 

production levels. Therefore, farms 
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operating at a non-optimal scale should 

prioritize increasing their production levels, 

either through collective input procurement 

through cooperatives, which can reduce 

feed and medication costs without requiring 

mergers, or by adopting participatory 

investment strategies to reach their 

economically optimal scale. Based on the 

scale efficiency results, most farms 

demonstrated increasing returns to scale, 

meaning that they could lower their costs 

by increasing farm size. Among the fish 

farms with increasing returns to scale 

(constituting 80% of the sample farms), a 

simultaneous 1% increase in the use of 

production inputs could result in more than 

a 1% increase in production levels, 

positively impacting their efficiency. These 

findings align with those reported by Sardar 

Shahraki and Esfandiari (2019). Both 

studies observed that input values were 

within the economic zone, while production 

was in the second zone. The findings are 

also consistent with the results of Tveterås 

and Asche (1999), Long et al. (2022), and 

Ogundari and Akinbogun (2010). 

Based on the results, the average 

technical efficiency of the cold-water fish 

producers in the CRS model was 0.63 with 

a standard deviation of 0.271. Only 20% of 

the farms were operating at the efficiency 

frontier. Similarly, in the VRS model, the 

average technical efficiency was 0.793 with 

a standard deviation of 0.160, and again, 

only 20% of the farms were fully efficient. 

The results showed that the greatest 

inefficiencies stemmed from medication 

consumption (28.12%) and feed 

consumption (20.13%), indicating that they 

are below optimal levels and need to be 

optimized. Low medication consumption 

can lead to an increased risk of diseases and 

health problems for the fish. Therefore, 

increasing medication use to prevent 

diseases and improve fish health is 

necessary. The farm area and the initial 

count of eyed eggs were nearly optimal and 

had minimal inefficiency. However, labor 

usage had an inefficiency of 12.14%, 

indicating that human resources are not 

being utilized effectively. These findings 

are consistent with those of Naghshinefard 

et al. (2011) and Yousefi et al. (2014). 

Finally, the super-efficiency model was 

estimated, revealing significant disparities 

in technical efficiency among the farms. 

The results highlighted substantial 

differences in performance among the 

efficient farms. It is essential to use this 

model for a more accurate ranking of the 

farms. Farms with higher super-efficiency 

(such as Farms 11, 7, and 4) should be 

identified as superior models for inefficient 

farms to emulate. These farms can serve as 

educational and consulting centers for 

others. To increase productivity, farms with 

lower super-efficiency (such as Farm 20) 

should adopt strategies for optimizing input 

consumption, improving resource 

management, and expanding production 

scale. Effective feed and medication 

management, better control of farm 

conditions, and the integration of modern 

technology can also contribute to boosting 

productivity. Ultimately, this study 

emphasized that the DEA model alone is 

insufficient for assessing efficiency and 

highlighted the importance of the super-

efficiency technique for more accurate 

rankings. However, this study is also 

subject to limitations. The findings reflect 

the specific conditions of the Sistan region, 
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and generalizing these results to other 

regions requires further research and 

investigation. 

 

Conclusions 

Using Data Envelopment Analysis, this 

study demonstrated that there is a 

considerable space for efficiency 

improvement in the rainbow trout 

aquaculture sector in the Sistan region. It 

was revealed that only a small number of 

farms operated on the efficiency frontier, 

while the majority can significantly 

enhance their performance through better 

input management, technical 

improvements, and movement toward an 

economically optimal production scale. 

The dominance of increasing returns to 

scale among the farms further indicated that 

expanding production capacity particularly 

through cooperative input procurement or 

joint investment strategies, can serve as an 

effective approach for improving 

efficiency. 

Overall, the results highlight that 

optimizing feed and medication use, 

improving managerial capabilities, and 

adopting scale-adjustment strategies 

constitute the most critical pathways for 

increasing productivity in this sector. 

Moreover, the super-efficiency model 

underscores the importance of identifying 

and utilizing the experience of top-

performing farms to support the 

improvement of less efficient units. 

In summary, the study emphasizes that 

enhancing technical, managerial, and scale-

related factors can play a pivotal role in 

reducing production costs, increasing 

output, strengthening food security, and 

improving rural livelihoods in the region. 

Consequently, developing targeted policies 

that promote better management practices, 

optimizing input consumption, and 

supporting the formation of cooperative 

structures are essential for ensuring the 

long-term sustainability and growth of the 

cold-water aquaculture industry in Sistan. 
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