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Abstract 

Harmful algal blooms caused by dinoflagellates have significant adverse effects on 

environmental and public health. This study aimed to investigate the effect of water 

physicochemical parameters on the annual cycle of epiphytic dinoflagellates in the 

northern Chabahar Bay coastal waters of the Oman Sea (Iran).  The macroalgal samples 

with associated epiphytes were collected seasonally from 6 coastal sites in spring, 

summer, atumn 2019 and winter 2020. The water physicochemical parameters were 

measured, and the data were analyzed using a one-way ANOVA and the principal 

component analysis (PCA).  Twelve potentially toxic dinoflagellate species from five 

genera were identified during the four sampling seasons. Amphidinium carterae with an 

average of 11.22% and A. operculatum with an average of 10.77% of the total abundance 

of epiphytic dinoflagellates were the dominant species, and Gambierdiscus australes 

showed an average of 6.48%.Based on the PCA, the abundance of certain species was 

found to be influenced by different environmental factors. The PCA revealed that NO2, 

NO3 and SiO4 values had the greatest impact at sites with high abundances of A. 

operculatum, Prorocentrum concavum, P. emarginatum, P. rhathymum and G. balechii. 

Furthermore, PO4 concentration had the greatest impact at the sites with high abundances 

of A. carterae, P. lima, Ostreopsis lenticularis, O. heptagona, G. balechii, G. toxicus, G. 

australes and Coolia monotis. The results obtained highlighted a significant impact of 

dissolved oxygen, pH, salinity, temperature and nutrients on the epiphytic dinoflagellate 

species abundances in the study area. 
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Introduction 

Epiphytic microalgae are organisms 

attached to or associated with seaweeds 

(macroalgae and seagrasses) and 

growing on their surface. Seaweeds are 

suitable substrates for the attachment 

and growth of microalgae in coastal 

waters (Murphy et al., 2013). Different 

species of microalgae occupy different 

habitats based on depth, wave exposure, 

coastal beds, and other environmental 

factors. The dynamics, abundance, and 

community structure of epiphytic 

microalgae are affected by biotic factors 

such as age, host seasonal cycle, growth 

cycle pressure by herbivores, as well as 

by abiotic factors such as light, 

temperature, nutrients, and water 

movement (Sales and Ballesteros, 2009; 

Lewis et al., 2020; Durán-Riveroll et al., 

2023). Epiphytic dinoflagellates, a 

taxonomic group that contains the 

majority of toxic species among marine 

algae, are mostly found in tropical and 

subtropical regions (Aligizaki et al., 

2011; Stanca and Parsons, 2021). 

Several factors, such as temperature 

increase, lack of air circulation and 

rainfall, and enrichment of coastal 

waters due to sewage and pesticides, 

may cause harmful algal blooms (HAB) 

(Enriquez et al., 2010; Hayashida et al., 

2020; Cembella et al., 2021) resulting in 

mortality of invertebrates, fish, and 

mammals and in acute human poisoning. 

Recently, different types of algal blooms 

caused by dinoflagellates have occurred 

in the south of Iran. For example, 

Noctiluca scintillans (Macartney) 

Kofoid et Swezy have bloomed mainly 

after oil spills; the seasonal algal bloom 

caused by this species is periodically 

seen in Chabahar waters (Bahri, 2018; 

Asefi and Attaran-Fariman, 2023). 

Ershadifar et al. (2020) investigated the 

response of phytoplankton assemblages 

to variations in environmental 

parameters in Chabahar Bay, the 

Northeast of the Oman Sea, the 

Southeast of Iran. They specifically 

focused on HAB and coastal hypoxia. 

Jalili et al. (2022) examined short-term 

variations of phytoplankton 

communities in response to a Noctiluca 

scintillans bloom in Chabahar Bay. 

Asefi and Attaran-Fariman (2023) 

reported a Noctiluca scintillans bloom in 

the southeastern coastal waters of Iran. 

Margalefidinium polykrikoides 

(Margalef) Gómez, Richlen and 

Anderson (2017) (= Cocholodinium 

polykrikoides Margalef) is the main 

species in the neighboring Persian Gulf 

that causes toxic blooms (Zarshenas et 

al., 2015).  Additionally, Prorocentrum 

Ehrenberg is one of the dominant 

dinoflagellate genera that contributes to 

algal blooms and causes mortality of 

marine fauna. Overall, HAB can cause 

different syndromes such as paralytic 

shellfish poisoning (PSP), neurotoxic 

shellfish poisoning (NSP), ciguatera fish 

poisoning (CFP), amnesic shellfish 

poisoning (ASP), and diarrhetic shellfish 

poisoning(DSP). These human 

intoxications are produced by various 

toxins, such as saxitoxin, brevetoxin, 

dinophysistoxin, ciguatoxin, domoic 

acid and their analogs. They can cause 

diarrhea, vomiting, dizziness, and even 

death of the patient (Van Dolah et al., 

2002). Therefore, it is necessary to 
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investigate the relationship between 

environmental factors and microalgal 

assemblages. To date, in Iran and other 

countries, various studies on different 

aspects of benthic HAB and 

epibenthic/epiphytic dinoflagellate 

assemblages have been conducted 

(Maso and Garcés, 2006; Kim et al., 

2011; Makaremi et al., 2011; Dhib et al., 

2013; Okolodkov et al., 2014; Zarshenas 

et al., 2015; Akbarzadeh et al., 2017; 

Aquino-Cruz and Okolodkov, 2016; 

Adam et al., 2017; Al-Handal et al., 

2018; Wilken et al., 2018; Isles and 

Pomati, 2021; Asefi et al., 2023; Dai et 

al., 2023). Due to the importance of this 

issue, this study aims to investigate the 

effect of physicochemical factors on the 

annual cycle  of epiphytic dinoflagellate 

assemblage in Chabahar Bay. 

  

Material and methods 

Study area 

Chabahar Bay is located in an area 

characterized by hot arid summers and 

short dry winters. The air temperature 

usually varies between 16oC and 37oC; it 

is rarely below 12oC (down to 7oC) or 

above 40oC (up to 47oC). The climate, in 

general, is hot and humid, influenced by 

summer and winter monsoon systems 

from the Indian subcontinent (Armanfar 

et al., 2019). Four seasons are 

distinguished during a calendar year: 

spring, summer, autumn, and winter. 

The tidal range in the bay is about 2 m. 

Station 1(ST1) located in Abshirikon 

with the sandy mud substrate, station 

2(ST2) in Tis region with the sandy rock 

substrate, station 3(ST3) in Lipar zone 

with the rock substrate, station 4 (ST4) 

is in Shilate coast with the sandy 

substrate, station 5 (ST5) in the 

Daryakochic coast with the sandy 

substrate and station 6 (ST6) in 

Daryabozorg coast with the rock 

substrate.  

 

Sampling and in situ measurements 

Samples were taken seasonally (four 

samplings) in low tide from spring (15 

May, 2019), Summer (15 Agust, 2019), 

atumn (15 November, 2019) to winter 

(15, March, 2020) at six coastal sites in 

Chabahar Bay (Fig. 1). The macroalgal 

samples with associated microalgal 

epiphytes with three replicates were 

collected by hand all macroalgae 

samples from each replicate placed in 

three 250 ml plastic flasks with 

surrounding seawater and fixed with 

stock formaldehyde to a final 

concentration of 4%  and then 

transported to the laboratory. Water 

temperature was recorded in situ with a 

thermometer, pH was measured with a 

WTW portable pH meter, model LF 320 

(Weilheil, Germany), and salinity was 

measured with an ATAGO  MASTER-

S/MillM (Japan) refractometer.  

 

Laboratory analyses 

The samples were shaken vigorously in 

the flask for 1 min. To separate the 

attached epiphytic microalgae, they 

were filtered through 500 µm mesh. The 

macroalgae were then washed twice 

with 100 ml of 0.2-μm filtered seawater 

to recover the maximum amount of 

microalgae and then weighed (Hachani 

et al., 2018). The water samples for 

determination of physicochemical 

parameters were collected in 500 ml 

plastic flasks. 
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Figure 1: Study area and sampling sites (green-filled circles) of epiphytic dinoflagellates in 

Chabahar Bay, the Sea of Oman (2019-2020) (S: Station). 

 

Inorganic nutrients (nitrites – NO2, 

nitrates – NO3, orthophosphates – PO4 

and silicates – SiO4) were determined 

using a Bran+Luebbe GmbH 

continuous-flow AutoAnalyzer III 

(Norderstedt, Germany) with a UV-vis 

spectrophotometer (JENWAY 6705) 

(APHA, 2005). Data on meteorological 

parameters were obtained from 

specialized weather forecasting websites 

(www.wunderground.com and 

www.worldweatheronline.com), and  the 

geographical characteristics of each 

sampling site were determined using a 

GPS. The samples were kept in the dark 

for 14 days to allow sedimentation. The 

upper layer of water was carefully 

decanted using a siphon, and the samples 

were then centrifuged in several steps 

(Willén, 2000). A 1-ml Sedgewick-

Rafter counting chamber, an inverted 

Ceti microscope (Belgium) and KE 

Review imaging software, version 3.71-

ml were used. The counted cells were 

reported as cells/g of macroalgae fresh 

weight. The identification of 

dinoflagellate species was carried out 

using specialized literature (Faust and 

Gulledge, 2002; Hallegraeff et al., 

2004).  

 

Statistical analyses 

The normality of data was confirmed 

using the Kolmogorov-Smirnov test, and 

a one-way analysis of variance 

(ANOVA) was performed to determine 

significant differences between 

treatments. Duncan's test was used to 

compare means at a significance level of 

0.05. Additionally, the impact of 

physical and chemical parameters on the 

abundance of phytoplankton was 
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evaluated using the PCA analysis in the 

PAST software version 2.13. 

 

Results 

Epiphytic dinoflagellate assemblages 

In 2019-2020, at six sites in Chabahar 

Bay, a total of twelve potentially toxic 

epiphytic dinoflagellate species from 

five genera (Amphidinium Claparède et 

Lachmann, Coolia Meunier, 

Gambierdiscus Adachi et Fukuyo, 

Ostreopsis Johs. Schmidt and 

Prorocentrum Ehrenberg) were 

identified during the four sampling 

seasons. The genera Prorocentrum (4 

species) and Coolia (1 species) had the 

highest and the lowest number of 

identified species, respectively. Twelve 

were observed in spring, autumn, and 

winter, while eleven were observed in 

summer. The identified seasonal 

abundance of phytoplankton showed 

significant differences between the 

abundance of Amphidinium carterae, 

Amphidinium operculatum, Ostreopsis 

heptagona, and Gambierdiscus 

australes, while no significant 

differences were observed between the 

abundance of other species (p<0.05). 

Amphidinium operculatum (3.13%) had 

the highest percentage in spring, 

Prorocentrum lima (83.14%) had the 

highest percentage in summer, 

Ostreopsis lenticularis (4.10%) had the 

highest percentage in autumn, and 

Amphidinium carterae (95.12%) had the 

highest percentage in winter  (Figs. 2 and 

3). The genera Prorocentrum and Coolia 

had the highest and lowest percentages 

of abundance  during all four seasons 

(Figs. 4 and 5) (Table 1 to 5).  

 

Physicochemical variables 

The seasonal averages of the measured 

physicochemical variables in Chabahar 

Bay in 2019-2020 are shown in Table 6.  

The results showed that only the 

seasonal average of salinity in summer 

and spring had a significant difference 

between them  (p<0.05), and no 

significant differences were observed 

between the values of the 

physicochemical parameters in different 

seasons (p>0.05). 

 

PCA between environmental factors and 

the phytoplankton abundance 

Based on the PCA test results in 

components 1 and 2, dissolved oxygen 

(DO), pH, and salinity had the greatest 

impact at stations; ST4, ST6 in spring, 

ST6 in summer, ST2 and ST3 in autumn, 

ST2 and ST4 in winter the highest 

abundances of A. operculatum, P. 

concavum, P. emarginatum, P. 

rhathymum and O. lenticularis. 

Additionally, temperature had the 

greatest impact at stations; ST3 and ST4 

in atumn and ST6 in winter with the 

highest abundances of A. carterae, P. 

lima, O. heptagona, G. balechii, G. 

toxicus, G. australes and C. monotis in 

components 3 and 4 (Fig. 6).
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Figure 2: Potentially toxic dinoflagellates in Chabahar Bay in 2019-2020; A: Amphidinium carterae; 

B: A. operculatum ; C: Prorocentrum concavum; D and E: P. emarginatum; F: P. rhathymum G: P. 

lima; H: Gambierdiscus toxicus; I: G. australes; J: Ostreopsis heptagona; K and L: Coolia monotis. 
 

PCA between nutrients and 

phytoplankton abundance 

Based on the PCA test results,  NO2, NO3 

and SiO4 had the greatest impact at 

stations in different season with the 

highest abundances of A. operculatum, 

P. concavum, P. emarginatum, P. 

rhathymum, and G. balechii. 

Additionally, PO4 had the greatest 

impact at stations in different seasons 

with the highest abundances of A. 

carterae, P. lima, O. lenticularis, O. 

heptagona, G. balechii, G. toxicus, G. 

australes, and C. monotis (Fig. 7).

 

10 µm 
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Figure 3: Abundance (%)of the total dinoflagellate of potentially toxic epiphytic dinoflagellates in 

Chabahar Bay, 2019-2020. 

 

 
Figure 4: Abundance (%) of the potentially toxic epiphytic dinoflagellate genera in Chabahar Bay, 

2019-2020. 
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Figure 5: Average abundance (%) of the total dinoflagellate of potentially toxic epiphytic 

dinoflagellates in Chabahar Bay, 2019-2020. 

 

Table 1: Species composition and cell abundances (mean ± standard error; cells g-1) of potentially 

toxic dinoflagellates at six sampling sites/stations in Chabahar Bay, the Sea of Oman Sea 

(2019-2020) in spring. 

Species Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Amphidinium carterae 

(Hulburt, 1957) 
10.79±4.67 5.60±2.08 14.24±7.12 11.79±0 4.65±0 8.47±3.60 

Amphidinium operculatum 

(Claparède and Lachmann, 

1859) 

10.79±0 5.60±2.08 7.12±0 19.66±6.80 10.85±2.60 10.25±2.60 

Prorocentrum concavum 

(Fukuyo, 1981) 
5.40±4.04 1.87±1.06 4.12±2.37 7.86±6.80 2.60±1.55 4.47±3.60 

Prorocentrum 

emarginatum (Fukuyo, 

1981) 

6.74±2.33 1.87±1.06 7.12±0 11.79±0 6.20±2.60 6.35±0 

Prorocentrum lima (Stein, 

1878) 
9.44±2.33 4.67±3.23 7.12±0 7.86±6.80 6.20±2.60 4.23±3.60 

Prorocentrum rhathymum 

Loeblich III et al., 1979) 
4.04±2.33 1.06±0.93 4.12±2.37 11.79±0 4.65±0 6.35±6.35 

Ostreopsis lenticularis 

(Fukuyo,1981) 
5.40±0 3.73±1.06 7.12±0 11.79±0 3.20±2.60 6.35±0 

Ostreopsis heptagona 

(Norris et al., 1985) 
5.40±0 1.87±1.06 7.12±0 11.79±0 4.65±0 6.35±0 

Gambierdiscus balechii 

(Fraga et al., 2016) 
5.40±0 4.67±3.23 7.12±0 11.79±0 6.20±0 6.35±0 

Gambierdiscus toxicus 

(Adachi et al., 1979) 
6.74±2.33 2.80±0 7.12±0 11.79±0 4.65±0 4.23±3.60 

Gambierdiscus australes 

(Chinain and Faust,1999) 
6.74±2.33 1.06±0.93 7.12±0 11.79±0 11.60±3.20 8.23±3.60 

Coolia monotis (Meunier, 

1919) 
4.05±2.33 1.87±1.06 7.12±0 11.79±0 6.20±0 4.23±3.60 
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Table 2: Species composition and cell abundances (mean ± standard deviation; cells g-1) of 

potentially toxic dinoflagellates at six sampling sites/stations in Chabahar Bay (the Sea 

of Oman) in summer. 

Species Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Amphidinium carterae 7.60±4.23 6.33±5.49 8.60±4.63 7.6±4.59 7.84±6.60 5.35±0 

Amphidinium operculatum 7.60±4.23 5.49±3.33 8.60±4.63 7.6±4.59 7.84±6.60 3.60±1.70 

Prorocentrum concavum 7.60±4.23 6.33±5.49 8.60±4.63 0 0 0 

Prorocentrum emarginatum 7.60±4.23 5.49±3.33 0 0 0 0 

Prorocentrum lima 12.79±0 6.34±5.49 8.60±4.73 7.6±4.59 7.84±6.60 3.70±3.60 

Prorocentrum rhathymum 7.60±4.23 5.49±3.33 8.60±4.63 9.11±7.6 7.84±6.60 3.70±3.60 

Ostreopsis lenticularis 7.60±4.23 0 0 0 6.70±3.90 3.60±1.70 

Ostreopsis heptagona 0 5.49±3.33 0 0 0 3.60±1.70 

Gambierdiscus balechii 8.23±7.26 0 8.60±4.63 0 0 3.60±1.70 

Gambierdiscus toxicus 7.60±4.21 5.49±3.33 8.60±4.63 0 6.70±3.80 0 

Coolia monotis 7.60±4.21 6.33±5.49 9.63±8.60 0 7.74±6.60 0 

 

Table 3: Species composition and cell abundances (mean ± standard error; cells g-1) of potentially 

toxic dinoflagellates at six sampling sites/stations in Chabahar Bay (Oman Sea, Iran) in 

autumn. 

Species Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Amphidinium carterae 7.76±0 2.35±0 5.60±4.63 8.06±7.60 3.20±2.60 5.60±5.50 

Amphidinium operculatum 5.33±4.49 3.60±1.7 3.75±0 8.05±7.60 4.60±4.20 7.20±3.60 

Prorocentrum concavum 5.33±4.49 1.70±1.6 5.63±4.60 12.76±0 4.76±0 5.35±0 

Prorocentrum emarginatum 5.33±4.49 1.70±1.6 3.76±0 16.06±7.60 4.76±0 5.35±0 

Prorocentrum lima 7.76±0 1.60±0.7 3.76±0 20.14±14.60 4.76±0 3.6±3.2 

Prorocentrum rhathymum 5.33±4.49 1.70±1.6 4.59±2.60 8.06±7.60 4.76±0 5.35±0 

Ostreopsis lenticularis 10.04±4.49 1.60±0.7 5.63±4.60 12.76±0 4.76±0 7.20±3.60 

Ostreopsis heptagona 5.80±4.49 2.80±2.49 3.76±0 8.06±7.60 6.2±2.6 5.35±0 

Gambierdiscus balechii 4.49±2.33 1.60±0.7 3.76±0 8.06±7.60 4.76±0 5.35±0 

Gambierdiscus toxicus 7.76±0 1.60±0.7 2.49±2.33 12.76±0 6.20±2.6 7.20±3.60 

Gambierdiscus australes 4.49±2.33 2.80±2.49 3.76±0 8.06±7.60 6.80±2.6 5.35±0 

Coolia monotis 7.76±0 1.60±0.7 5.63±4.60 12.76±00 4.76±0 5.35±0 

 

Table 4: Species composition and cell abundances (mean ± standard error; cells g-1) of potentially 

toxic dinoflagellates at six sampling sites/stations in Chabahar Bay (Oman Sea, Iran) in 

winter. 

Species Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Amphidinium carterae 6.22±4.6 4.63±3.6 9.5±7.4 13.49±11.8 8.6±8.06 4.5±0 

Amphidinium operculatum 6.22±4.6 4.63±3.6 7.5±5.2 8.35±0 4.4±0 2.63±2.6 

Prorocentrum concavum 3.63±3.6 2.76±0 4.5±0 8.35±0 4.5±0 4.5±0 

Prorocentrum emarginatum 4.63±2.6 2.76±0 7.5±2.2 8.35±0 4.5±0 2.63±2.6 

Prorocentrum lima 4.63±2.6 2.76±0 4.5±0 5.6±5.3 5.63±2.6 4.5±0 

Prorocentrum rhathymum 2.62±2.6 2.76±0 4.5±0 8.35±0 4.5±0 4.5±0 

Ostreopsis lenticularis 3.35±0 2.76±0 6.2±2.6 8.35±0 4.5±0 2.63±2.6 

Ostreopsis heptagona 3.35±0 1.6±1.4 4.5±0 5.6±5.4 5.63±2.6 4.5±0 

Gambierdiscus balechii 3.35±0 3.7±1.6 3.2±2.6 5.6±5.5 4.5±0 5.63±2.6 

Gambierdiscus toxicus 3.63±3.6 2.76±0 4.6±4.2 5.6±5.5 4.5±0 2.6±1.4 

Gambierdiscus australes 4.63±2.6 1.7±1.6 6.2±2.6 11.8±5.49 4.5±0 4.5±0 

Coolia monotis 3.35±0 2.76±0 4.5±0 5.6±5.5 4.5±0 4.5±0 
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Table 5: Seasonal average abundance (mean ± standard error; cells g-1) of potentially toxic 

dinoflagellates from six sampling sites in Chabahar Bay (the Sea of Oman) in 2019-2020. 

Species Spring Summer Autumn Winter 

Amphidinium carterae 9.26±1.38a 7.22±0.48ab 5.43±0.95b 7.82±1.41ab 

Amphidinium operculatum 10.71±1.82a 6.79±0.77b 5.42±0.75b 5.62±0.87b 

Prorocentrum concavum 4.39±0.79a 3.76±1.70a 5.92±1.49a 4.71±0.78a 

Prorocentrum emarginatum 6.68±1.18a 2.18±1.41a 6.16±2.06a 5.06±0.97a 

Prorocentrum lima 6.59±0.73a 7.81±1.22a 6.94±2.77a 4.60±0.43a 

Prorocentrum rhathymum 5.34±1.34a 7.06±0.84a 4.97±0.83a 4.54±0.84a 

Ostreopsis lenticularis 6.27±1.15a 2.98±1.44a 7.00±1.62a 5.42±1.90a 

Ostreopsis heptagona 6.20±1.22a 1.52±0.99b 5.33±0.76a 4.48±0.84ab 

Gambierdiscus balechii 6.92±0.94a 3.41±1.68a 4.67±0.86a 4.63±0.92a 

Gambierdiscus toxicus 6.22±1.18a 4.73±1.55a 6.34±1.65a 5.01±0.74a 

Gambierdiscus australes 7.76±1.47a 0 5.21±0.80ab 4.20±0.62b 

Coolia monotis 5.88±1.28a 5.22±1.70a 6.31±1.52a 4.33±0.45a 

Different lowercase letters(ab) indicate a significant difference between seasons (p>0.05). 
 

Table 6: Seasonal average (mean±standard error) of the measured physicochemical variables 
from six sampling sites in Chabahar Bay, 2019-2020.  

Parameters Spring Summer Autumn Winter 

NO2 (mg L-1) 2.27±0.43a 2.99±0.68a 3.85±0.47a 4.17±0.96a 

NO3 (mg L-1) 0.06±0.02a 0.07±0.02a 0.07±0.05a 0.21±0.10a 

PO4 (mg L-1) 0.31±0.05a 0.34±0.12a 0.30±0.12a 0.21±0.11a 

SiO4 (mg L-1) 0.31±0.04a 0.26±0.09a 0.48±0.15a 0.29±0.09a 

Temperature (oC) 32.38±0.24a 32.53±0.16a 32.22±0.09a 32.18±0.08a 

Salinity 37.72±0.20a 37.18±0.07b 37.65±0.17ab 37.40±0.15ab 

pH 6.92±0.14a 6.83±0.11a 7.17±0.11a 7.00±0.13a 

Oxygen (mg L-1) 8.31±0.54a 8.75±0.58a 9.48±1.28a 9.43±0.39a 

Different lowercase letters(ab) indicate a significant difference between seasons (p>0.05). 

 
Figure 6: Principal Component Analysis (PCA) between the frequency of identified epiphytic 

dinoflagellate species and measured physicochemical variables at six sampling stations during 

different seasons. Physicochemical variables: temperature (TEM), salinity (SAL), and dissolved 

oxygen (DO). Identified dinoflagellate species: A. carterae (SP1), A. operculatum (SP2), P. concavum 

(SP3), P. emarginatum (SP4), P. lima (SP5), P. rhathymum (SP6), O. lenticularis (SP7), O. heptagona 

(SP8), G. balechii (SP9), G. toxicus (SP10), G. australes (SP11), and C. monotis (SP12). The sampling 

stations are categorized based on seasons, with spring stations represented in green, summer stations 

in gray, autumn stations in yellow, and winter stations in blue. 
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Figure 7: Principal Component Analysis (PCA) between the frequency of epiphytic dinoflagellates 

and nutrient levels at six sampling stations during different seasons. Studied nutrients: nitrite (NO2), 

nitrate (NO3), phosphate (PO4), and silicate (SiO4). Identified dinoflagellate species: A. carterae 

(SP1), A. operculatum (SP2), P. concavum (SP3), P. emarginatum (SP4), P. lima (SP5), P. rhathymum 

(SP6), O. lenticularis (SP7), O. heptagona (SP8), G. balechii (SP9), G. toxicus (SP10), G. australes 

(SP11), and C. monotis (SP12). The sampling stations are categorized based on seasons, with spring 

stations represented in green, summer stations in gray, autumn stations in yellow, and winter 

stations in blue. 
 

Discussion 

It was shown that the species richness, 

local distribution, and abundance of 

epiphytic dinoflagellates are affected by 

several physicochemical variables. 

Seasonal changes in the surrounding 

environment of macroalgae cause 

changes in the abundance of epiphytic 

organisms (Geddie and Hall, 2019). 

Prorocentrum species are known to 

produce a range of toxins, including 

okadaic acid and analogs, 

dinophysistoxins, and yessotoxins 

(Hoppenrath et al., 2013; Hoppenrath et 

al., 2023). In contrast, Coolia species are 

primarily associated with the production 

of cooliatoxins (Holmes et al., 1995; 

Wakeman et al., 2015; Phua et al., 

2021). Benthic Amphidinium species 

produce a wide range of toxins, and 

amphidinols have been reported more 

frequently (Wellkamp et al., 2020; 

Hoppenrath et al., 2023 ). Ostreopsis 

species mostly produce palytoxins and 

their analogs, ovatoxins, and ostreocins. 

However, the importance of epibenthic 

dinoflagellates is principally due to 

ciguatera and its negative impact on 

human health mainly in tropical 

countries. At present, at least 18 

Gambierdiscus species, including the 

three species identified in the present 

study (G. australes, G. balechii and G. 

toxicus), are known to produce 

ciguatoxins (Hoppenrath et al., 2023). 

HAB caused by dinoflagellates should 

not be overlooked due to their negative 

impacts on environmental and human 

health (Brosnahan et al., 2020). These 

blooms can deplete oxygen in the water, 
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harm marine life, and produce toxins 

that can accumulate in seafood and other 

marine products, posing a risk to human 

health (Gárate-Lizárraga et al., 2019; 

Piontkovski et al., 2021). HAB can harm 

or kill organisms that form the basis of 

the food web. Furthermore, HAB can 

negatively impact the fishing industry 

and coastal economies, as well as 

recreational activities such as swimming 

and boating. It is therefore crucial to 

actively monitor and manage HAB to 

minimize its impacts on the 

environment, human health, and coastal 

communities (Zhou et al., 2017; 

Mulholland et al., 2018; Açaf et al., 

2020). In a study by Okolodkov et al. 

(2007) on seasonal variations of 

epiphytes in the SW Gulf of Mexico, P. 

lima was found to be dominant, with the 

highest abundances observed on the 

seagrass Thalassia testudinum Banks ex 

König and the green alga Ulva fasciata 

Delile. The results showed that 

temperature, salinity, acidity, DO, and 

other measured parameters did not 

exhibit a significant correlation with the 

epiphytic dinoflagellate species (Table 

6).  In a study by Okolodkov et al. (2014) 

on seasonal variations of epiphytic 

dinoflagellates in the SE Gulf of Mexico, 

a total of 20 dinoflagellate species from 

12 genera were identified. The genus 

Prorocentrum had the highest 

abundance, and P. rhathymum, 

Amphidinium cf. carterae, and 

Gambierdiscus species were dominant. 

Additionally, the PCA showed a strong 

correlation between epiphytic 

dinoflagellates and salinity, nutrients, 

and water temperature (Fig. 6).  In a 

study by Hachani et al. (2018) on the 

spatio-temporal distribution of toxic 

epiphytic dinoflagellates on 

macrophytes in the Gulf of Tunisia, 

Ostreopsis sp., P. lima, and C. monotis 

were dominant. According to the 

redundancy analyses (RDA), 

relationships between variables showed 

that Ostreopsis sp. had a direct 

correlation with ambient temperature 

and had the highest abundance during 

summer and the abundance of P. lima 

and C. monotis were found to be 

correlated with nutrient levels (Hachani 

et al., 2018). In a study by Gharbia et al. 

(2019) on toxic dinoflagellates in the 

Bizerte Gulf in northern Tunisia, the 

species Ostreopsis spp., P. lima and C. 

monotis were found to have positive 

Pearson correlations with environmental 

factors. Moreover, the spatial 

distribution of these dinoflagellates was 

attributed to changes in the levels of 

dissolved nutrients in the Gulf. In a study 

by Kim et al. (2021) on toxic epiphytic 

dinoflagellates in Jeju Island in the 

Korea Strait, five genera (Amphidinium, 

Coolia, Gambierdiscus, Ostreopsis, and 

Prorocentrum) were identified; the 

genus Ostreopsis had the highest 

abundance.  

Epiphytic dinoflagellates, including 

those that cause HAB, are known to be 

influenced by environmental factors and 

nutrient availability (Anderson et al., 

2021; Marampouti et al., 2021). 

Nutrients, particularly nitrogen and 

phosphorus compounds, are known to 

play a crucial role in the growth and 

proliferation of dinoflagellates. These 

elements are essential for the synthesis 
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of cellular components, such as proteins 

and nucleic acids, and for energy 

production through photosynthesis 

(Hachani et al., 2018; Wurtsbaugh et al., 

2019; Drouet et al., 2022). In marine 

environments, nutrient availability is 

often limited, and the input of nutrients 

from external sources, such as 

agricultural runoff and wastewater 

discharge, can lead to eutrophication and 

HAB caused by dinoflagellates.  The 

mechanisms by which nutrients promote 

the growth and proliferation of 

dinoflagellates are complex and vary 

depending on the species and the 

environmental conditions (Fricke et al., 

2018). Generally, increased nutrient 

availability can lead to higher growth 

rates and cell division rates, leading to 

an increase in the overall abundance of 

dinoflagellates. Additionally, high 

nutrient availability can promote the 

formation of resting cysts, which can 

increase the resilience of dinoflagellates 

to environmental stressors and allow 

them to persist in the environment for 

extended periods (Jauzein et al., 2017; 

Sarkar, 2018; Gharbia et al., 2019).  

Moreover, nutrient availability can 

influence the functioning of 

dinoflagellates; high nutrient availability 

can also increase the production of 

toxins by dinoflagellates, which can 

have negative ecological and socio-

economic impacts (Kim et al., 2021; 

Wang et al., 2021). Toxins produced by 

dinoflagellates can harm marine 

wildlife, fisheries, and human health, 

leading to the closure of fisheries and 

beaches and negatively affecting coastal 

communities and regional economies 

(Accoroni et al., 2017; Smith et al., 

2017; Park et al., 2020). 

Based on the PCA results, DO had the 

greatest impact at stations with the 

highest abundances of the species A. 

operculatum, P. concavum, P. 

emarginatum, P. rhathymum, and O. 

lenticularis (Fig. 6). DO is an 

important environmental factor that can 

affect the growth and distribution of 

marine organisms, including epiphytic 

dinoflagellates that cause HAB 

(Hachani et al., 2018; Zou et al., 2022). 

Generally, dinoflagellates require 

oxygen for respiration, and changes 

in DO levels can affect their respiration 

rates and growth rates. Carnicer et al. 

(2019) and Arbeláez et al. (2020) stated 

that changes in DO levels can affect the 

physical and chemical properties of the 

marine environment, including the 

availability of nutrients and other 

environmental factors, such as 

temperature, pH and salinity, which can 

further influence the growth and 

distribution of dinoflagellates.  Low DO 

levels, also known as hypoxia, can have 

a significant impact on the abundance of 

dinoflagellates. Hypoxia can lead 

to reduced respiration 

rates and increased mortality 

rates among dinoflagellates, which, in 

turn, can lead to a decrease in their 

overall biomass and abundance 

(Rodríguez-Gómez et al., 2019; Longo 

et al., 2020). Additionally, hypoxia can 

alter the availability of nutrients and 

other environmental variables, which 

can further influence the growth and 

survival of dinoflagellates.  High DO 
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levels can also have a negative impact on 

the abundance of dinoflagellates. They 

can lead to the production of reactive 

oxygen species, which can 

cause oxidative stress and damage to 

dinoflagellate cells (Ghariba et al., 2019; 

Berlinghof et al., 2022).  

The results showed that salinity had a 

significant impact on the abundance of 

several dinoflagellate species, 

including A. operculatum, P. concavum, 

P. emarginatum, P. rhathymum, 

and O. lenticularis. Some authors 

observed a notable impact of salinity on 

dinoflagellate communities that 

contribute to the formation of algal 

blooms (Feki-Sahnoun et al., 2019; Park 

et al., 2020; Stanca and Parsons, 2021). 

They reported that an increase in salinity 

led to a decrease in the abundance of 

these dinoflagellate species. Generally, 

dinoflagellates are sensitive to changes 

in the osmotic pressure of the 

surrounding environment, and high 

salinity can lead to cellular dehydration 

and reduced growth rates (Park et al., 

2020; Stanca and Parsons, 2021). 

Abadie et al. (2018) and Feki-Sahnoun 

et al. (2019) state that high salinity can 

limit the availability of nutrients, such as 

nitrogen and phosphorus compounds, 

which can further reduce the growth and 

proliferation of dinoflagellates. 

The results showed that temperature 

had a significant impact on the 

abundance of several dinoflagellate 

species, including A. carterae, P. lima, 

O. heptagona, G. balechii, G. toxicus, 

G. australes, and C. monotis (Figure 6). 

Similar results have been reported by 

other authors (Bi et al., 2021; 

Rodríguez-Villegas et al., 2021). 

Temperature is another environmental 

factor that can influence the growth and 

distribution of epiphytic dinoflagellates 

that cause HAB. Dinoflagellates 

have optimal temperature ranges for 

growth and reproduction, and changes in 

temperature outside of these ranges can 

lead to reduced growth rates and cell 

death (Jang et al., 2018; Arbeláez et al., 

2020). Boisnoir et al. (2020) state that 

changes in temperature can affect the 

availability of nutrients and 

other environmental parameters, such 

as DO, pH, and salinity, which can 

further influence the growth and survival 

of dinoflagellates. 

According to the PCA results, pH had 

the greatest impact at stations with the 

highest abundances of A. operculatum, 

P. concavum, P. emarginatum, P. 

rhathymum, and O. lenticularis (Fig. 7). 

This conclusion is consistent with the 

results obtained by other authors (Longo 

et al., 2020; Kang et al., 2021). The pH 

level is a crucial environmental variable 

that can have a significant impact on 

both the growth and distribution of 

epiphytic dinoflagellates. 

Dinoflagellates have optimal pH 

ranges for growth and reproduction. In 

particular, an increase in pH can lead to 

a decrease in the availability of CO2, 

which can limit the photosynthetic 

rates of dinoflagellates (Longo et al., 

2020). According to Berlinghof et al. 

(2020), high pH can alter the chemical 

composition of the marine environment, 

Low pH, also known as acidification, 

can also have negative impacts on the 

abundance of dinoflagellates. 
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Acidification can lead to the dissolution 

of calcium carbonate structures, which 

can reduce the availability of this 

important nutrient for dinoflagellates 

and other marine organisms (Foo et al., 

2018; Berlinghof et al., 2022). 

Additionally, acidification can lead to 

the production of hydrogen ions, which 

can cause cellular damage and reduce 

the growth and survival of 

dinoflagellates (Heil and Muni-Morgan, 

2021; Berlinghof et al., 2023). 

    Based on the results of this study, in 

2019-2020, twelve potentially toxic 

epiphytic dinoflagellate species from 

five genera were identified in Chabahar 

Bay during the four seasons. 

Prorocentrum and Coolia had the 

highest and lowest number of identified 

species, respectively. The presence of 

the three Gambierdiscus species (G. 

australes, G. balechii, and G. toxicus) 

identified from Chabahar Bay allows us 

to consider it a ciguateric area, and the 

occurrence of ciguatera in this zone is a 

matter of time. The study also found 

significant differences in the abundance 

of certain species between seasons. The 

results suggested that DO, pH, salinity, 

and temperature had a significant impact 

on the abundance of certain species. 

Moreover, the study examined the 

relationship between nutrients and 

dinoflagellate abundance, with NO2, 

NO3, SiO4, and PO4 being identified as 

having the greatest impact on the 

abundance of certain species. The results 

on the species composition of the 

potentially toxic dinoflagellates have 

implications for various industrial 

management applications. In 

aquaculture, they aid in preventing 

contamination and ensuring seafood 

safety. In fisheries management, 

monitoring these organisms helps 

protect fishery resources. They act as 

indicators of environmental health and 

water quality, supporting environmental 

monitoring and conservation efforts. In 

coastal areas and recreational waters, 

understanding toxic dinoflagellates 

ensures public health and safety. 

Additionally, they offer potential for 

pharmaceutical and biotechnological 

applications. Overall, these findings 

provide important insights into the 

dynamics of phytoplankton in Chabahar 

Bay and can inform management 

strategies to mitigate the risks associated 

with harmful algal blooms. 
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