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Abstract

Salinity is an environmental factor that affects abalone, H. diversicolor squamata stress
and survival in the hatchery and grow-out area. To understand the protective
mechanism of HSP70 and HSP90 under salinity stress, a completely randomized
design, and one way ANOVA test were carried out with 95% confidence interval. To
characterize heat shock protein genes, we used target clones and target plus clones to
obtain partial length sequences of two heat stress response-related genes: (1) heat shock
protein 70 (HSP70) and (2) heat shock protein 90 (HSP90). The HSP70 and HSP90
genes contain 201 bp and 302 bp which encode 38 and 87 amino acids, respectively.
The results of multiple sequence alignment showed that HSP70 and HSP90 sequences
were highly conserved compared to other species. Real-time polymerase chain reaction
(PCR) results showed that HSP70 and HSP90 were salinity dependent and HSP70 and
HSP90 gene expression was quantified by Quantitative Real-Time PCR of hemolymph
and leg muscles showing 10ppt salinity shock for 12 h showing higher HSP70 and
HSP90 mRNA expression levels higher than the control group at 32 ppt and decreased
expression thereafter. Experimental results suggest that these two genes may play an
important role in responding to environmental stress caused by decreased salinity.
Thus, this study established a theoretical foundation for further in-depth study of
mechanisms of protection of abalone molecules against salinity stress.
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Introduction
There are about 100 species of abalone
worldwide, with larger abalones mostly
found in temperate zones and smaller
specimens usually in tropical and cold
areas (NCBI, 2018; Wikipedia, 2021).
Indonesia is home to two commercially
valuable abalone species, H. asinina
and H. diversicolor squamata. Abalone
of Haliotidae family has distinct
characteristics, such as a single shell
with a nacreous layer on the inside and
a coloured and patterned outer layer.
The shell also has a series of 12-23
breathing holes, with the first two often
being closed and subsequent ones
appearing hollow. The shell of H.
diversicolor squamata is generally
round and reddish with a rough surface,
although the colour of the shell can be
affected by the species' environment
and feeding habits. The tropical abalone
species H. diversicolor squamata is
widespread along the south and east
coasts of Bali and south of Java Island.
In recent years, abalone has become
important because of the increasing
trend of shellfish production in
Indonesia, including abalone, which has
increased by 9.7% per year from 2020,
which was 87,000m* to 107,000m* in
2022 (Directorate General of
Aquaculture RI, 2022). Global warming
and ocean pollution have become major
challenges for aquatic organisms,
including abalone in recent years. These
environmental stressors can impact
marine molluscs, which are often
considered ideal indicators of changes
in environmental quality because of
their presence in coastal and estuarine

areas and their ability to filter water
(Pascal et al., 2004; Jeyachandran et al.,
2023; Pourmozaffar et al., 2023).
Various species of bivalves, including
abalone, have demonstrated the effects
of pollution on immune and stress
responses (Galloway and Depledge,
2001; Boutet et al., 2004; Lee et al.,
2023). Fluctuations in physical and
chemical quality of water, such as
changes in salinity, can significantly
stress mollusks and weaken their
immune  systems (Gajbhiye and
Khandeparker, 2017). Low-salinity
stress, in particular, can affect the
abalone's immune system and make it
more susceptible to infection with
pathogenic bacteria (Cheng et al., 2004;
Yasa et al., 2020).

Heat shock proteins (HSPs) are a
type of stress protein that help reduce
biochemical, physiological, and
histological changes that cells undergo
due to environmental changes (Harsij et
al., 2021). HSPs in eukaryotic
organisms are usually categorized into
six main families based on their
molecular weight: small HSPs, HSP60,
HSP70, HSP90, HSP100, and HSP110
(Parsell and Lindquist, 1993; Feder and
Hofmann, 1999). HSPs, such as HSP27,
HSP60, HSP70, and HSP90, help cells
cope with various stress conditions
(Qian et al., 2012). They are involved
in cell functions, including protein
folding, aggregation, stabilization,
assembly, and transport (Morimoto,
1993; Sharma et al., 2009). HSP also
functions as a cellular defence
mechanism, preventing protein
denaturation and helping to remove


http://jifro.ir/article-1-5318-en.html

[ Downloaded from jifro.ir on 2026-01-29 ]

Iranian Journal of Fisheries Sciences 22(4) 2023 811

denatured proteins caused by external
stress (Feder and Hofmann, 1999;
Wang et al., 2004). Characterization
and gene expression profiling studies of
HSP in  response to  various
environmental pressures have been
carried out on various aquaculture
species such as abalone, H. diversicolor
(Huang et al., 2014), common octopus,
Octopus vulgaris (Hong et al., 2015),
Haliotis discus (Wang et al., 2011),
tiger prawns, Penaeus monodon (Shi et
al., 2016) on the other hand, studies on
the adaptation of H. diversicolor
sgquamata to environmental changes,
especially in low-salinity culture
systems, are still rarely carried out.

In this study, we sequenced HSP70
and HSP90 DNA from H. diversicolor
squamata hemocytes, then we used
real-time PCR to investigate the relative
mRNA expression of HSP70 and
HSP90 after different salinity shocks
for abalone. In addition, very few
studies have been conducted regarding
response to salinity shock in tropical
abalone and protective activity of
HSP70 and HSP90 in H. diversicolor
squamata during low salinity stress is
largely unknown. This study is the first
report on genetic characterization of
HSP70 and HSP90 in H. diversicolor
squamata abalone and its expression in
response to exposure to low-salinity
culture media.

Materials and methods

H. diversicolor squamata seed source
Abalone juveniles which are used in
this study were obtained from the

abalone hatchery unit at Sukadana
Village, Kubu Sub-District,
Karangasem Regency in Bali Province,
Indonesia in September 2021. It takes 8
months for Abalone seeds production
starting from newly hatched larvae.
Larval rearing up to juvenile size of 1
cm is carried out on the rearing plate
which is hung on the rearing tank with
volume of 1m?® At this stage abalone
were fed with benthic diatoms
(Nitzschia sp.) attached to the rearing
plate. After 1 cm of abalone seed and
grading, seeds were transferred into
floating baskets and fed with Ulva sp.
and Gracilaria sp. Maintenance with
this basket is carried out for 4 months
until the abalone seed reaches 3-4cm in
size.

H. diversicolor squamata with total
length and weight of (32.97£1.83 mm
and 5.13+0.83 g) respectively were
collected from floating baskets and
distributed in 20cm PVC pipe and lied
in 1m® fiberglass tank with flow
through  system  for 1  week
(temperature, 29-30°C; salinity, 32—
33ppt) in laboratory. The abalone were
fed every day with fresh Gracilaria sp.
before doing the research.

Characterization of Hsp70 and Hsp90
genes

Haemolymph collection and sample
preparation

The abalone  haemolymph  was
withdrawn from the cephalic arterial
sinus, accessed from the anterior at the
angle between foot and head using a
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microsyringe fitted with a 25-gauge
needle. the hemolymph from normal
and healthy abalone were sampled for
extracting RNA, and stored in -80°C
freezer before using.

HSPs gene expression analysis under
salinity induced stress

Low salinity shock experiment

For low salinity challenge experiment,
20 cm long 3”7 PVC pipe which
contained 30 abalone per pipe was used
as experimental unit. Salinity values of
10 ppt (low salinity) and 32 ppt
(control) were conducted on 4
rectangular glass aquaria (100L). In
each aquarium three PVC pipes were
put in as replicates. During the salinity
treatment, the abalone was observed for
stress  response,  survival, and
hemolymph was taken at 0, 2, 4, 6, 12,
24 and 48h for gene expression
analysis.

RNA extraction and HSP70 and HSP90
genome amplification

Total RNA was extracted from
hemolymph abalone using spin column
method with Quick-RNA™
MiniPrepPlus Kit (R1058) (Zymo
Research). For sample preparation
DNA/RNA shield™ (1X) was added to
a hemolymph sample, and resuspended
in a 1500 pl microtube. For every 300
pl of sample, 30 pl PK digestion buffer
and 15 pl Proteinase K were added,
mixed and then incubated at 55°C until
dissolved. 30 minutes, after incubation,
the sample was vortexed and then
centrifuged at 16.000xg for 2 minutes

and transferred the aqueous supernatant
into an RNase-free tube. An equal
volume of RNA lysis buffer was added
and well mixed.

For RNA purification, samples were
lysed in RNA lysis buffer onto a Spin-
Away™ filter in a yellow tube and
centrifuged to remove most of the
gDNA. Then it was transferred again to
the green Zymo-Spin™ III CG column
in a collection tube, centrifuged, and
discarded. 50 pl of DNase/RNase-free
water was directly added to the column
matrix and centrifuge at 16,000xg. The
eluted RNA was stored at -20°C. RNA
integrity was assessed by
electrophoresis on 1% TBE agarose gel.
RNA purity was verified measuring the
absorbance at 260 and 280 nm with
NDD 2000 (Nano Drop Technologies,
USA). The cDNA was obtained by
ReverTra Ace® qPCR RT master mix
with gDNA Remover (Toyobo, Japan).
Firstly, RNA templates were incubated
at 65°C for 5 minutes, then RNA
templates were mixed with master mix |
and incubated again at 35°C for 5
minutes. The mixture was then mixed
again with master mix Il and incubated
at 37°C for 5 minutes. The mixture was
incubated at 50°C for 5 minutes. Then it
was heated at 98°C for 5 minutes.
Finally, the mixture was left at room
temperature before use.

Real-time PCR reaction was
performed in a 20 pL reaction system
with a mixture of 2 puL Thunderbird
SYBR® gPCR Mix (Toyobo, Japan), 2
pL forward primary (10 pM), 2 pL
reverse primer (10 uM), 2 uL cDNA
template equivalent to total RNA total
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50 ng, and 4 puL free water nuclease.
Gene-specific primers were listed in
Table 1. The thermal cycling condition
was 95°C for 30 seconds, followed by
40 cycles of 95°C for 5 seconds, 58°C
for 30 seconds, and 72°C for 30
seconds. Melt curve analysis was added
(65°C to 95°C, with 0.5°C / s addition).
The average cycle threshold (Ct) value

calculated using Applied Biosystem
system software with B-actin gene as
reference gene. The expression level of
HSP70 and HSP90 mRNA were
determined using 2““" method (Livak
and Schmittgen, 2001). The
housekeeping gene B-actin (GenBank:
AM236595) was selected as internal
control.

of each triplicate reaction was
Table 1: Primer used for Real Time PCR.
Primer Sequence (5°-3°) Gene bank Accession number Reference
HSP9OF  CCAGGAAGAATATGCCGAGT
HSP9OR  CACGGAACTCCAACTGACC AM283515 Farcy etal., 2007
HSP70 F CCGCTCTAGAACTAGTGGAT AM283516 Farcy et al.. 2007
HSP70 R CCGCCAAGTGGGTGTCT yetal,
B-actin F GGGTGTGATGGTCGGTAT AM236595
BactinR  AGCGAGGGCAGTGATTTC Farcy etal., 2007
Results instruction. Amplicon of HSP70 and

Agarose gel electrophoresis

Genomic DNA for polymerase chain
reaction (PCR) analysis was obtained
using nucleic acid extraction kit 1l

according to the manufacturer’s

HSP90 genes were electrophored and
compared with Marker at 1% TBE
agarose gel with the size of 874bp and
1813bp, respectively, as shown at Figure
1.

2 pL PCR Products were
assessed by electrophoresis with

DNA Mass
(ng/5 i) bp

) ‘E

1% TAE Agarose Gel

1% TBE agarose

Annealing 50.1 °C
Annealing 50.9 °C
Annealing 51.8 °C
Annealing 53.2 °C
Annealing 55.2 °C

NhWONS

b WN -

o
2 pL PCR Products “Sample 2" a0
were assessed by = a0
electrophoresis with 1% TBE - B
agarose - B 800
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. Annealing 51.8 °C =

. Annealing 53.2 °C
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3 b 290C

DNA Mass
(ng/S )
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Figure 1: Amplicon of abalone hemolymph after PCR using HSP70 and HSP90 primer on 1% TBE
agarose, M: marker; 1: HSP70; 2: HSP90.
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Nucleotide and homology sequence of
H. diversicolor squamata HSP70 and
HSP90 compared to other sequences in
gene bank

Nucleotide sequences and deduced
amino acid sequences of HSP70 and
HSP90 are shown with single letter
representation  below  with  the
respective codons. BLAST results
analysis showed the HSP70 sequence
homolog with 24 sequences with an
identity value of 87-95%. The highest
similarity with H. diversicolor, H.
tuberculata, H. rufescens, H. discus
hannai and H. fulgens hsp70 was 95%
and the lowest homology with
Providencia rettgeri strain 151 was
30% similarity. The nucleotide
sequence of H. diversicolor squamata
HSP70 after BLAST analysis shared
high sequence similarity with other
known HSP70 (over 90%) with H.
diversicolor (FJ812176.1), H.
tuberculata (AM283516.1), H.
rufescens (JN129486.1), H. discus
hannai (DQ329856.1), and H. fulgens
(MH221528.1).

Family signature of HSP70 and HSP90
sequences and phylogenetic analysis

Homology was done through multiple
sequences alignment by CLUSTAL O
(2.2.4), and the result of homologous
analysis showed that three conserved
amino acid motifs of HSP70 protein
family had highly conserved sequences
during species evolution (Fig. 2).
HSP70 amino acid sequences among
the species we chosen were highly
homologous (higher than 80%). The
amino acid sequence of HSP70 shared

high similarity with other HSP70s from
H. diversicolor (95%) and Galeopterus
variegatus (78%).

Otherwise the HSP90 sequence was
homolog with 11 sequences with a
similarity value of around 11-35%.
HSP90 only shared sequence similarity
(over 20%) with other abalone species
like H. diversicolor (KC161208.1)
22%, H. midae (JN793423.1) 22% and
H. tuberculata (AM283515.1) 35%

(Fig. 3).

Characterization of partial-length H.
diversicolor squamata HSP70

The partial length HSP70 cDNA from
H. diversicolor squamata was obtained
by 5° and 3° RACE-PCR. Sequence
analysis of HSP70 cDNA revealed that
the cDNA was 874 bp long encoding
268 amino acids, with a calculated
molecular mass of 30170.04 kDa and an
isoelectric point of 6.19. Deduced
amino acid sequence of HSP70,
includes ATP-GTP binding site, HSP70
family signature 2, and bipartite nuclear
localization signal. This sequence is
missing HSP70 family signature 1,
HSP70 family signature 3,
Glycosylation motifs 1 and 2, and
EEVD consensus sequence.

Characterization of partial-length H.
diversicolor squamata HSP90

The partial length HSP90 cDNA from
H. diversicolor squamata was obtained
by 5° and 3° RACE-PCR. HSP70
cDNA sequence analysis revealed that
the cDNA was 874 bp long, and had
encoded 268 amino acids, an isoelectric
point of 6.19 with a predicted molecular
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mass of 30170.04 kDa. Deduced amino
acid sequence of HSP70, includes ATP-
GTP binding site, HSP70 family
signature 2, and bipartite nuclear
localization signal. This sequence
consisted of HSP90 family signature

CLUSTAL ©(1.2.4) multiple segquence alignment

1,2,3,45 and Lysine-rich nuclear
localization signal. The sequence is
only missing MEEVD consensus
sequence.

H.discus
H.div.squamata
H.fulgens
H.gigantea
H.diversicolor
H.tuberculata

H.discus
H.div.sgquamata
H.fulgens
H.gigantea
H.diversicolor
H.tuberculata

H.discus
H.div.squamata
H.fulgens
H.gigantea
H.diversicoleor
H.tuberculata

H.discus
H.div.sgquamata
H.fulgens
H.gigantea
H.diversicolor
H.tuberculata

H.discus
H.div.squamata
H.fulgens
H.gigantea
H.diversicolor
H.tuberculata

H.discus
H.div.squamata
H.fulgens
H.gigantea
H.diversicolor
H.tuberculata

H.discus
H.div.squamata
H.fulgens
H.gigantea
H.diversicolor
H.tuberculata

—MEKQAVGIDLGTTYECVGVFQHGKVEI IANDOGNRTTPSYVAFTDTERLIGDAAKNQVA 59
——————————————— — - - - NRVA 4
MAKAPANCIDLGTTYECVGVFQHGKVEI IANDQGNRTTPSYVAFTDTERLIGDARKNQVA 60
MAKAPAYCTIDLGTTYBCVGVFQHGKVEI IANDQGNRTTPSYVAFTDTERLIGDARKNQVA &0
MAKAPAYCGIDLGTTYRCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERLIGDARKNQVA 60
MAKAPATCTIDLGTTYBCVGVFQHGKVEI IANDQGNRTTPSYVAFTDTERLIGDARKNQVA 60

* - k&
Hsp70 family signature-1
MNFENTIFDAKRLIGRRFEEANVQSDMEKHWPFNVLSDGGKFEIQVNYKDEPKTFYPEELS 119
MNPENTIFDAKRLIGRKFDETNVQSDMEHWEFNVMNDGGKPEIQVNYKDEPKTFYPEELS 64
MNFENTIFDAKRLIGRRFEEANVQSDMEHWPFNVLSDGGKPEKIQVNYKDEFKTEYPEEIS 120
MNPENTIFDAKRELIGRRFEEANVQSDMEHWPFNVLSDGGKPKIQVNYKDEFKTFYPEEIS 120
MNPENTIFDAKRLIGRRFDETNVQSDMEHWEPFNVLSDGGKPEIQVNYKDEPKTFYPEELS 120
MNFENTIFDAKRLIGRRFEEANVQSDMEKHWEPFNVLSDGGKFPEIQVNYKDEPKTFYPEELS 120
HEEXE I T AT XA T I & ** z *:* s **t****t*t***: . EEXIF XA XXX XA AAA XA T XA A LA X
SMVLTKMEE(ARQY LK TITDAVVTVPAYFNDSQRQATKDAGTISGLNVLRIINEPTARR 179
SMVLTEMEKE['AEQY LAKTITDAVVTVPAYFNDSQROQATKDAGT ISGLNVLRIINEPTARA 124
SMVLTEMKE[TAEQY LAKTITDAVVTVPAYFNDSQROQATKDAGT ISGLNVLRIINEPTARA 180
SMVLTEMKE[TAE QY LOKTITDAVVTVPAYFNDSQROQATKDAGT ISGLNVLRIINEPTARA 180
SMVLTEMKE[IARQY LOKTITDAVVTVPAYFNDSQRQATKDAGT ISGLNVLRIINEPTARA 180
SMVLTKMEE[TARQYLOKTITDAVVTVPAYFNDSQRQATKDAGTISGLNVLRIINEPTARR 180
R AR R S S M IEEE S S SR LE R R R R RS R SRRl SRRt RSt E e Rl Rt R RS

ATP-GTP binding site
IAYGLDEEVGGERNVY | FDLGGGTFDYVS [ [TIEDGIFEVESTAGDTHLGGEDFDNEMVNH 239
IAYGLDKKVGGERNVLIFDLGGGTFDVSINTIEDGIFEVKSTAGDTHLGGEDFDNRMVNHE 184
IAYGLDKKVGGERNVLIFDLGGGTFDVSINTIEDGIFEVKSTAGDTHLGGEDFDNRMVNHE 240
IAYGLDKKVGGERNVLYIFDLGGGTFDVSITIEDGIFEVKSTAGDTHLGGEDFDNRMVNH 240
IAYGLDKEVGGERNVYIFDLGGGTFDVS I TIEDGI FEVESTAGDTHLGGEDFDNRMVNH 240
IAYGLDKKVGGERNVLIFDLGGGTFDVS I TIEDGIFEVKSTAGDTHLGGEDFDNEMVNHE 240
Fhhkd Ak hkd Ak r Ak drhr A F|r kbbb bbbk d kA bk dFrdrdrdr A b d A A r A d A d b dd b hd
Hsp70 family signature-2
FIQEHKEKHKEDISDNERAVREELRETACKRAKRTIIESSTQASIEIDSLFEGVDYYTSITRA 299
FIQEKREHKKDISDNERAVRRLRTACERAKRTSSSTQASIEIDSLFEGVDYYTSITRA 244
FIQEJKRKHKKDISDNKRAVRRLRTACERAKRTISSSTQASIEIDSLFEGVDYYTSITRA 300
FIQEHKRKIKKDI SDNKRAVRERLRTACCRAKRTIISSSTQASIEIDSLFEGVDYYTSITRA 300
FIQEHKREHKEDISDNKRAVERLRTACERAKRTYSSSTQASIEIDSLFEGVDYYTSITRA 300
FIQEHKRKIKKDISDNKRAVERLRTACERAKRTIISSSTQASIEIDSLFEGVDYYTSITRA 300
Fhhk kb d bk dhkd kb d bbbk d b d bk d bkt hdkdkdrdddrdrdr A rrrd A d b dd o ddod
Bipartite Nuclear localization signal
RFEELNADLFRGTLEPVEKALRDAKADKASTHO VLVGGSTRIPEIQOHLLODFFNGKELC 359
RFEELNADLFRGTLEFVEKALRDA-———""—"—"""f}F-——"--""--""""""—""""-""——— 268
RFEELNADLFRGTLEPVEKALRDAKADKASTIHOIVLVGGSTRIPEKICHLLODFFNGKELC 360
RFEELNADLFRGTLEPVEKALRDAKADKASTIHOIVIVGGSTRIPKIOHLLODFFNGKELC 360
RFEELNADLFRGTLEPVEKALRDAKADKVSIHOIVLVGGSTRIPKIQHLLODFFNGKELC 360
RFEELNADLFRGTLEPVEKSLRDAKQDKVSIHOIVLVCGGSTRIPKIQHLLOQDFFNGKELC 360
AEE A A A A A I A A A A AL L LA z * R kA
Hsp70 family signature-3

KESINFDEAVAYGAAVOAATLHGDKSEEVQDLLLLDVTPLSLGIETAGGVMTVLIKENTTI 419
777777777777777777777 - —— 268
KSINPDEAVAYGAAVOAATLHGDKSEEVQDLLLLDVTPLSLGIETAGGVMTVLIKENTTT 420
KSINFDEAVAYGAAVOAAILHGDKSEEVQDLLLLDVTPLSLGIETAGGVMTVLIKENTTI 420
KSINPDEAVAYGAAVORATITLHGDKSEEVQDLLLLDVTPLSLGIETAGGVMTVLIKRNTTI 420
KSINFDEAVAYGAAVOAATLHGDKSEEVQDLLLLDVTPLSLGIETAGGVMTVLIKENTTI 420
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H.discus FTROTOTFTTY SDNQPGVLIQVYEGERAMTEDNNILGKFELTGIFPFAFRGVEQIEVTFDI 479
H.div.sgquamata = = ————————————————————— e e e 268
H.fulgens PTROTQTFTTY SDNQPGVLIQVYEGERAMTKDNNILGKFELTGIPPAPRGVEQIEVTFDI 480
H.gigantea PTEQTQTFTTY SDNQPGVLIQVYEGERAMTKDNNILGKFELTGIPPAPRGVEQIEVTFDI 480
H.diversicolor FTEKQTQTFTTY SDNQPFGVLIQVFEGERAMTKDNNILGKFELTGIFPPAPRGVEPQIEVTFDT 480
H.tuberculata FTROTOTFTTY SDNQPGVLIQVFEGERAMTEDNNILGKFELTGIFPFAFRGVEQIEVTFDI 480
H.discus DANGILNVSAVDESTMEKENKITITNDKGRELSKEEIERMVNEAENYKAEDEKQKDRIQAKN 539
H.div.sgquamata = = ————————————————————— e 268
H.fulgens DANGILNVSAVDESTMKENKITITNDEGRLSKEEIERMVNEAENYKAEDEKQEDRIQAKN 540
H.gigantea DANGILNVSAVDKESTMKENKITITNDKGRLSKEEIERMVNEAENYKAEDEKQEDRIQAKN 540
H.diversicolor DANGILNVEAVDKSTMKENKITITNDKGRLEKEEIERMVNEAENYKAEDEKQEDRIQAKN 540
H.tuberculata DANGILNVSAVDKSTMEKENKITITNDKGRLSKEEIERMVNEAENYKAEDEKQKDRIQAKN 540
H.discus GLESYAFNMESTVEDEKLKDKISEDDEKTITDECNDVISWLDSNQLAEKDEFEHKQKELE 599
H.div.squamata = = --———————————————————— e 268
H.fulgens GLESYAFNMESTVEDEKLEDKISEDDEKT ITDECHNDVISWLDSNQLAEKDEFEHKQKELE 600
H.gligantea GLESYAFNMESTVEDEKLKDKISEDDEKTITDKCHNDVISWLDSNQLAEKDEFEHKQKELE 600
H.diversicolor GLESYAFNMESTVEDEKLKDKISEDDEKTITDKCNDVISWLDSNQLAEKDEFEHKQKELE 600
H.tuberculata GLESYAFNMESTVEDEKLKDKISEDDEKTITDKCNDVISWLDSNQLAEKDEFEHKQKELE 600
H.discus GVCNPIITKLYQAAGGAGGMPGGMPGGME GGAGGLPGGADGQTGGSSGGETYKEY DF——— 655
H.div.sgquamata = = ——————————————————-—— ———— ] i - — —— 268
H.fulgens GVCNPIITKLYQAAGGAGGMPNFNPGARGAGAG-AGGAGGAQTGGSSGGPTYEEVD——— 655
H.gigantea GVCNPIITKLYQAAGGAGGMPNFNPGARGAGAG-AGGAGGAQTGGSSGEPTYEEVDKTTL 659
H.diversicolor GVCNPIITKLYQAAGGAGGMPNFNFGARG—————, BGGAGGAQTGGSSGGPTYEEVDF——- 651
H.tuberculata GVCNPIITKLYQAAGGAGGMPNFNPGAAG————— AGGAGGAPTGGSSGGPTYLEEVDF——-— 651

Cytoplasmic HSF70 C-terminal

Figure 2: Multiple sequence alignment of HSP70 H. diversicolor squamata by CLUSTAL O (1.2.4) with
different species. The characteristic motifs of the Hsp70 family are underlined as follows: three
signature at positions 55-65 (IDLGTTYSCV), 123-136 (IFDLGGGTFDVSIL), and 325-340
(IVLVGGSTRIPKIQK); a putative ATP-GTP binding site at 131-137(TAEQYLG); a putative
bipartite nuclear localization signal at 247-275 (KRKHKKDISDNKRAVRRY); and cytoplasmic
HSP70 carboxyl terminal region at 651-654(EEVD). Moreover, two glycosylation domains, (KSI)
and (NVSA) were also found at residues 362-364 and 488-491.

To examine the relationships among
various HSP70 and HSP90,
phylogenetic trees were generated by
ETE3 3.1.2 (Huerta-Cepas et al., 2016)
as implemented on the GenomeNet
(https://www.genome.jp/tools/ete/)

method using different HSP70 and
HSP90 family members selected from
vertebrate and invertebrate species. The
phylogenetic tree of HSP70 revealed
that these proteins were divided into
two clusters, one comprising vertebrate
and mollusk proteins, and the other one
containing Reptilia and bird proteins
such as Anolis carolinensis and
Meleagris gallopavo. In the vertebrate
cluster, there were Mammalia, Reptilia,
birds, amphibians, bony fishes, and
insects. As expected, HSP70 was
divided into the mollusk cluster and

closely  positioned to  Haliotis
diversicolor (Fig. 4A).

Interestingly, the phylogenic tree of
HSP90 was very similar to that of
HSP70 proteins were also divided into
two main clusters. Mollusks, including
H. tuberculata, H. diversicolor
squamata, Crassostrea virginica, and
Chlamys  formed a  sub-cluster,
vertebrates including mammals,
Amphibia formed the second sub-
cluster, and bony fishes formed the
other sub-cluster. These three sub-
clusters grouped together to form a big
cluster. Reptilia including Varanus
komodoensis, and Chelonia mydas
formed the other cluster (Fig. 4B).
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H.tuberculata LVEKKCMELFDDIMEDKDNFEKFYEQFSKNLKLGIHEDSTNRRELSDLLRYYTSQSGDEVT 497
H.asinina LVEKKCMELFEDLTEDKDNFEKFYEQFSKNLKLGIHEDSTNREKLSELLRYYTSQSGDEMT 498
H.div.sguamata LVEKCMELFDDIMEDKDNFEKFYEQFSKNLKLGIHEDSTNREKKLSELLRYYSEQSGDEVT 442
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H.tuberculata SLEEYVSRMEKENQKSIYYITGESKDSVONSAFVERVEKRGFEVIYMTDPIDEYCVQOLEKE 557
H.asinina SLEDYVSRMEKENQKSIYYITGESRDSVONSAFVERVEKRGFEVVYMTDPIDEYCVQOLEKE 558
H.div.squamata SLEDYVSRMEKENQKSIYYITGESKDSVONSAFVERVEKRGFEVIYMTDPIDEYCVQQLEKE 502
H.diversicolor SLEDYVSRMEKENQKSIYYITGESRDSVONSAFVERVEKRGFEVIYMTDPIDEYCVQQLEE 558
+**:*+****+******+***** :-**ir**************** = LR R R R R Rl
H.midae YDGKTLVCVTKEGLELPEDEEEKKKLEEAKAQFEGLCEVMEKEILDEKVEEKVVVSNELVTS 635
H.discus YDGKTLVCVTKEGLELPEDEEEKKKLEESKAQFEGLCKVMKE ILDEKKVEKVVVSNELVTS 619
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H.asinina YDGKTLVCVTKEGLELPEDEEEKKKLEEAKAQFEGLCKVMKEILDEKVEKVVVSNELVTS 6l8
H.div.sguamata YDGKTLVCVTKEGLELPEDEEEKKKFEEAKAQFEGLCKVMKEILDEKKVEKVVVSNELVTS 562
H.diversicolor YDGKTLVCVTKEGLELPEDEEEKKKFEEAKAQFEGLCKVMKEILDERKVEKVVVSNELVTS 618
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Cytoplasmic HSP90 C-terminal

Figure 3: Multiple sequence alignment of HSP90 H. diversicolor squamata by CLUSTAL O (1.2.4)
with different species. The characteristic motifs of the HSP90 family are underlined: five
signatures at positions 55-65 (SNKEIFLRELISNSSDALKIR), 123-136(LGTIAKSGT),
325-340 (IGQFGVGFYSAYLVAR), 356-364 (IKLVYRRVF), and 382-395
(GVVDSEDLPLNISR) a putative Lycine-rich nuclear localization signal at 131-
137(KDKKKKKKIKEK), and cytoplasmic HSP90 C-terminal region at 651-654
(MEEVD).

Protein
remodeling
macromolecular

folding,  transport, and
processes of

complexes are

mediated by HSP70 and HSP9O0.
Proteins that use the nucleotide-binding
domain (NBD) of HSP70 to exchange
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ADP for ATP, control the activity of
these molecules. A nucleotide-binding
domain (NBD), a protein substrate-
binding domain (SBD), and the C-
terminal domain, which is referred to as

proteins. The interaction of ATP and
ADP at the nucleotide-binding domains
causes the lid to transition from an open
to a closed conformation, acting as a lid
on the SBD (Fig. 5).

[ Downloaded from jifro.ir on 2026-01-29 ]

the lid for the substrate binding domain,
make up the three primary functional
domains of HSP70 and HSP90
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Figure 4: Phylogenetic tree of H. diversicolor squamata HSP70 (A) and HSP90 (B) constructed with
neighbor-joining distance method.

HSP70 and HSP90 mRNA expression
after low salinity challenge

The HSP70 and HSP90 expression
pattern of H. diversicolor squamata in
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hemocytes and gill from unchallenged
abalone were determined by qRT-PCR.
B—actin and was used as a reference
gene; all primers used for real-time
PCR are listed in Table 1. The temporal
expression of HSP70 and HSP90 in
hemocytes and gill after low salinity

ATP-GTP binding site

Bipartite nuclear
localization signal

Hsp70 family
signature 2

(A)

treatment was investigated for a better
understanding after salinity treatment,
the expression levels of HSP70
continued to increase and reached a
peak at 12 h after 10 ppt salinity
exposure.

Hsp90 family
signature 1

Hsp90 family
signature 2

Hsp90 family
signature 3

Lysine-rich nuclear $

localization signal \

A (‘

®)

Figure 5: Three-dimensional structure of H. diversicolor squamata HSP70(A) and HSP90(B) from
N-terminal (N’) to C-terminal (C’) was predicted using SWISS-Modell prediction
algorithm program (https://swissmodel.expasy.org) based on similarities with other

homologous sequences.

It was 28-fold in hemocytes and 35-
fold in gill as much as the level
observed in the control group (p<0.05)
(Fig. 6A). Then the mRNA expression
levels of HSP70 were dropped as time
progressed at 24h until 48h with a
similar value to the control. HSP90
MRNA was up-regulated in salinity
challenge  experiments and the
expression level reached peak values
(20—fold higher compared with that of

the control) in hemocytes and 30-fold in
12h after 10 ppt salinity exposure
(p<0.05). The expression level declined
at 24h close to normal condition (Fig.
6B). Compare with the results of
HSP70 and HSP90 gene expression,
HSP70 was more sensitive to salinity
exposure than HSP90 gene in 12h
treatment at 10 ppt salinity exposure
both in hemocytes and gill.
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Figure 6: HSP70 of hemocytes and gill (A) and HSP90 of hemocytes and gill (B) relative expression
levels during salinity challenge of the abalone. Bars with different asterisk indicate
statistically significant differences (p<0.05) in the relative expression.

Discussion

In this study, the partial cDNA
sequences of HSP70 and Hsp90 genes
from H. Diversicolor squamata were
cloned and showed high similarity to
those from other species. A homology
study revealed 24 sequences with an
identity value of 87-95% as the HSP70
sequence  homolog. The highest
similarity was with H. diversicolor, H.
tuberculata, H. rufescens, H. discus
hannai, and H. fulgens HSP70 with a
value of 95% and the lowest homology
was with Providencia rettgery strain
151 with 30% similarity. Otherwise
HSP90 sequence was homolog with 11
sequences with similarity value of
around 11-35%. HSP90 only shared
sequence similarity (over 20%) with
other abalone species, like H.

diversicolor (KC161208.1) 22%, H.
midae (JN793423.1) 22%, and H.
tuberculata (AM283515.1) 35%.

The evolutionary relationship between,
HSP70 and HSP90 was established by
constructing a phylogenetic tree using
12 homologous sequences. The tree
formed three distinct clades of HSP70
and HSP90 family; further, each HSP
family was formed in two branches,
which include invertebrates (Insecta
and mollusks) and vertebrates (reptilian,
amphibians, fishes, and mammals) (Fig.
4). In the tree of HSP70 and HSP90 H.
diversicolor squamata was most closely
related to H. diversicolor into a clade.
Otherwise, both of the trees showed that
reptilia were always farthest from
branches and formed a separate group.
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In addition to having a family signature,
HSP70 also had an ATP-GTP binding
site that functioned for ATP binding
and had a different role to play, whether
it was directly involved with ATP
binding or aided development of an
ATP-binding cassette transporter, as
can be seen from the three-dimensional
structures of HSP70 and HSP90. Each
dimer subunit had a connection site that
the ATP molecule attached to,
demonstrating that ATP was nearby
both subunits during catalysis. Walker
A motif residues are the two binding
motifs that directly interact with ATP
(Walker et al., 1982). Additionally, the
carboxyl-terminal domain controls the
bipartite nuclear localization signal
necessary for p53 nuclear import (Liang
and Clarke, 1999). Unlike HSP90,
which has 4 family signatures and also
a Lysine-rich nuclear localization signal
which  functions to mediate the
interaction between STAT Dimeric and
Importin a5 (Fagerlund et al., 2002).

HSP70 and HSP90 are ubiquitously
expressed with different expression
levels under normal conditions. In this
study, the mRNA expression levels of
HSP70/90 were detected in hemocytes
of abalone H. diversicolor squamata.
The expression pattern of both genes
exposed to low salinity challenge were
almost  similar.  The  maximum
expression of HSP70 and HSP90 was
observed at 12 hours after exposure to
salinity stress, and decreased very
rapidly and reached similar level as the
control after 24 hours post exposure.

It is known that decrease in salinity
affects  metabolic  functions and

physiological parameters in aquatic
animals (Bussell et al., 2008; Roberts et
al., 2010; Pourmozaffar et al., 2019).
When abalones are exposed to salinity
stress, ROS are generated, which are
highly impairing normal cell function
and indirectly act as DNA damage
signaling molecules (Zhou et al., 2009).
HSP70 and HSP90 are common
molecular chaperones involved in the
folding and processing of various
cellular regulators (Frydman, 2001;
Sharma, et al., 2009). The induced
increase in HSP expression levels was
found to be one of the approaches
protecting the organism from further
damage (Li and Xiang, 2013). In our
study, under low salinity stress, we
found that HSP70 and HSP90 mRNA
levels increased in both tested tissues
(hemocytes and gill) at 12h after
challenge and decreased thereafter (Fig.
6). The above results showed that the
transcription rates of HSP70 and HSP90
had the same pattern in both genes.
Elevated salinity stress dramatically
increased the expression of HSP70 and
HSP90 after 6h. Based on the current
data, we suspect that, among the two
known HSP genes in H. diversicolor
squamata, HSP70 plays a more
important role in protecting cells from
damage due to acute salinity stress than
HSP90, because its expression level
was higher than HSP90 at the same
salinity concentration and this may be
the best candidate gene for use as a
biomarker to assess salinity stress in H.
diversicolor squamata abalone cultures.

In another mollusk, H. discus
hannai, HSP70 expression analysis
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showed that HSP70 was expressed in
several organs or tissues, indicating that
HSP70 was  synthesized  under
unstressed conditions, but its levels
were relatively higher in the mantle
(Cheng et al., 2007). Similar results
were found in other mollusks, such as
Ruditapes philippinarum where they
were ubiquitously expressed in four
collected tissues, and the highest level
of the two genes were observed in
digestive gland (Liu et al., 2004).
PuHSC70 mRNA form Paratapes
undulatus was expressed in all tested
tissues, and the highest expression level
was detected in digestive gland (Wu et
al., 2014). However, a different result
was observed in Magallana
hongkongensis, the highest HSP70
expression level was detected in muscle
(Zhang et al., 2012).

In conclusion, the study provides
insights into the expression profiles and
potential roles of HSP70 and HSP90 in
H. diversicolor squamata under salinity
stress. HSP70 is suggested to play a
more significant role in protecting cells
from damage, and it may serve as a
potential biomarker to assess salinity
stress in H. diversicolor squamata
abalone cultures.
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