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Abstract

Delay-difference type models (D-DMs) represent a theoretical bridge between classical
surplus-production models and data-rich age-structured models. However, periodic
changes of recruitment, growth, and mortality rates can also be accounted for in the
continuous time delay-difference models (CTDDMSs). Such models incorporate
biological processes by considering continuous time delays. In the present study,
CTDDMs produced realistic outputs for yield, biomass, and biological reference points
(BRPs) based on using data from the southern Atlantic albacore fishery. Simulations of
predicted biomass or numbers were carried out using fully age-structured information
(covering 30 years) and compared with more complicated age-structured production
models (ASPMs). The performance of the CTDDMs was also compared with that of a
Bayesian surplus production model (BSPM). BSPM estimates of the BRPs, e.g., I, k
and MSY, were used as benchmarks for the respective CTDDMSs estimates. The
assessed maximum sustainable yields by the two models were approximately 21,600 t
and 23,500 t, respectively, while the CTDDMs produced more population parameters
estimation. The CTDDMs provided reliable prediction of BRPs for sustainable fisheries
management and required fewer data than ASPMs. This study have evaluated the
applicability and sensitivity of the continuous-time-type D-DM model. The scalability
of these models will be discussed in further research.
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Introduction

In demonstrations of the composition of
aquatic ecosystems, it is often difficult
to decide upon, and to justify, the most
practical fish growth model to employ
(Hilborn and Mangel 1997; Quinn and
Deriso 1999). Individual growth rates
of fish and their age of maturity often
vary with environmental changes
(Haddon, 2011; Froese et al., 2014).
The classical surplus production model
(SPM) lacks biological reality; the age-
structured production model (ASPM)
requires highly detailed biological
information (Quinn and Deriso, 1999),
while the delay-difference model
(DDM) considers biological
information too simplistically (Deriso,
1980; Musick and Bonfil, 2005;
Collette et al., 2006). Walters (2011)
first proposed a continuous time delay-
difference model (CTDDM) in which
recruitment, growth, and mortality rates
are treated as varying continuously over
time. In the CTDDM, the fishing
mortality rate is considered to be
dependent on the age of the fish from
recruitment through older life stages.
The model is considered a theoretical
bridge between classical surplus-
production models and nominally data-
rich age-structured models. Therefore,
the CTDDM is an appropriate
alternative model for assessment of fish
stock, which has the capacity to connect
between ASPM and SPM (Walters,
2011).

Previously, several types of discrete-
time D-DMs have been applied to fish
and short life cycle aquatic animals
(Pallare and Restrepo, 2003; Walters

and Martell, 2004; Jensen et al., 2009),
such as shark-like fishes (Musick and
Bonfil, 2005), lobsters (Hall, 1997),
prawns (Dichmont et al., 2003) and
Moroccan octopus (Robert et al., 2010).
Many  assessment  methods and
approaches have been applied to the
stock of the southern Atlantic albacore
(Thunnus alalunga) (Yeh et al., 1990;
Sun et al., 2002; Vifas et al., 2004;
Vrugt et al., 2009; ISSF, 2011; ICCAT,
2013), but, to date, the literature on
CTDDM is sparse. The southern
Atlantic albacore (Thunnus alalunga) is
a comparatively slow growing, long-
lived (>13 vyears) species. It is a
commercially important stock, which is
widely distributed in tropical and
subtropical waters of the Atlantic
Ocean, from the tropics to the latitude
of approximately 55°S (Yeh et al.,
1990; ICCAT, 1999; Sun et al., 2002;
Vifias et al., 2004). The International
Commission for the Conservation of
Atlantic Tunas (ICCAT) has defined
three groups of albacore stock in the
Atlantic: the northern and southern
Atlantic stocks (separated at 5°N), and
the Mediterranean stock. Although the
status of the southern Atlantic albacore
stock is better than that of the northern
stock, the former may also face
overfishing (ICCAT, 2011). The
ICCAT and International Seafood
Sustainability Foundation (ISSF) have
also reported overexploitation of the
southern Atlantic albacore stock based
on different maximum sustainable yield
(MSY) reference points (ICCAT, 2012;
ISSF, 2011). Thus, effective
management procedures are badly
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needed to protect against further
overexploitation ~ of this  fishery
(ICCAT, 2011; Zhang et al., 2015).

This present work aims to validate this
modified method (CTDDM, Walters,
2011; Walters, 2020) based on
continuous simulation of biological
processes, and to provide a more
detailed account of the model’s
performance characteristics. For
assessment of biological reference
points (BRPs) of a slow-growing long-
lived species, it is essential to determine
a reliable method of management of the
fishery when data availability is limited
(ICCAT, 2012; Froese et al., 2014).
Such models would be useful to assess
BRPs, to compare yields in different
systems, and to set the fishery
management for future sustainable
development. CTDDM  will be
compared with conventional SPM
population models accomplished by
software packages, including catch-
effort data analysis (CEDA, Hoggarth
et al., 2006), an SPM incorporating
covariates (ASPIC, Prager 2005), an
age-structured production model
(ASPM, Quinn and Deriso, 1999), and a
Bayesian surplus production model
(BSPM) (Vrugt et al.,, 2009; Haddon
2011; Carruthers et al., 2012). Through
Bayesian analysis, we can analyze the
role of alternative information sources
in support of decision-making and the
effects of alternative decisions on
various aims (Han and Carlin 2001;
Vrugt et al., 2009; Kuikka et al., 2014).
In this study, a justifiable finding
showed that the CTDDM produces
realistic outputs for yield, biomass, and

BRPs when applied to southern Atlantic
albacore fishery data. The CTDDM
treats  recruitment, growth, and
mortality rates as varying continuously
over time, and is considered a
theoretical bridge between SPMs and
ASPMs. The primary aims of this paper
were: (i) to explore and apply this
generally unfamiliar CTDDM to an
important fishery, southern Atlantic
albacore (T. alalunga), and to promote
this model to the fishery’s scientific
community; (ii) to examine model
presentation, validation and application
of CTDDM; and (iii) to provide
reference  information  for  the
sustainable management on southern
Atlantic albacore stock.

Materials and methods

Data sources

Catch data (1956-2011) for the south
Atlantic albacore fishery were obtained
from the ICCAT statistical databases
(ICCAT, 2011). For  albacore
population, total production over the
past 30 years ranged from
approximately 15,000 t to 40,000 t,
mainly from longline fisheries (ICCAT,
2012). According to ICCAT (2013), the
Chinese Taipei Longline Fishery Index
provides a good indication of the
abundance of albacore populations.
Standardized catch per unit effort
(CPUE) based on the Chinese Taipel
longline fishery was used as a relative
abundance index of the southern
Atlantic albacore fishery (ICCAT,
2013). The length-weight relationship
was taken from Penney (1994) and the
Von  Bertalanffy  growth  model
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(VBGM) parameter K, W,, and mean
body weight at age were based on Lee

and Yeh (2007) (Table 1).

Table 1: Summary of the distribution functions or true values used for the key parameters of
southern Atlantic Albacore (Thunnus alalunga) stock.

The distribution functions or true values used for the key parameters

The point estimates of VVon Bertalanffy
growth coefficient, K and asymptotic

L=147.5(1-exp (-0.126(t+1.89)))

weight, W, and mean body weight atages ~ W=1.3718(10"(-5)) L(3.0973)

k (Wey) and k-1 (We(x)) from Von
Bertalanffy growth equation.

We=(1-K)(16.56-10.64K)/(1+1.88k+0.88(k"2))

dW/da = (W,.-w(a))

CTDDM

In the classical delay-difference model
(D-DM), the mean body weight of the
fish follows a difference relationship for
age a > k that leads to the Ford-Brody
version of the von Bertalanffy growth
model (Hilborn and Walters, 1992).
Schnute (1985) proposed that the point
estimates of o, p, and mean body weight
at age k could be obtained from the von
Bertalanffy growth model. According to
the suggestion of Schnute (1985) and
Fournier and Doonan (1987), the stock-
recruitment relationship (SRR) has
three  parameters. The CTDDM
provides an extremely compact and
exact simulation of the dynamics of
total numbers and biomass for age-
structured populations, and is expressed
as follows:

©

B(t) = j N(a,t)w(a,t)da

ask 1)
dB(t)/dt = w(K)R(Y) +xW,.N(t) - (Z(t) +K)B(t) (2)
R (t) =aB (t-k)/ (1+B (t-k)) (3)

dW/da = xk(W..-w(a)) 4)

Where B(t) is the stock biomass for year
t, R(t) is recruitment for year t in the
Beverton-Holt SRR model, and N, ; is
stock number, Ng  =St-1 Naar1; kK and
W, are von Bertalanffy growth
coefficients and asymptotic weight,
respectively; the recruitment R, are the
asymptotic  values,. The  total
instantaneous mortality rate Z (t) =F (t)
+M, was assumed to vary over time
with changes in fishing mortality rate F
(t). Under constant R(t) and F(t)
conditions and taking differential
equations (2) and (3) to equal zero, then
C.=FB,, and N.,= R/Z, B,=BPR*R,
where BPR is biomass per recruit; a,
and g are the parameters of the
Beverton-Holt SRR model. Under these
conditions, recruitment R(t) and fishing
mortality rate F(t) are treated as step-
wise constants over short time intervals
At, and N(t+At) is the exact prediction
of population number at the end of each
interval for the given starting values,
and B(t+At) is the analytical solution of
the CTDDM. The analytical solution of
the CTDDM used in this study can be
expressed as follows:
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B(t+A) = Boo + Wi [N(t) - NooJe” 4+ {B(1) - Boo- W [NO-NJJe 4 (5)

N(t+At) = N+[N(t)-N.Je* 2  (6)

B(t+At) = s*()[*N() + p*B(0)] + WiR()H*

N(t+AL) = sON() + RE)(L - s*(1))/Z

(7)

H*=[1- p*s(O1/(Z+x) + £We[1-p*s()/ [WiZ(Z+x)] - WeeS(E)(1- p*)(W(K)*Z) (9)

S*(t) — e-(F+M)At, p* - e-KAt’ 5* — Woo(l'p*)

Where B, and N., are the asymptotic
values, and H* and s* are transitional
parameters, while p* and a* do not
change except in cases where the
growth curve varies over time.

Model sensitivity

Sensitivity analysis is the assessment of
predicted changes and errors and their
impacts on conclusions to be drawn
from the model (Pannell, 1997; Arlot
and Celisse, 2010; Pardo, et al., 2014).
To determine how uncertainty in each
parameter affects estimates of the
stochastic factor, A(¢), the formula to
calculate them was derived by the
perturbing kernel K(Y, X) to K(Y,
X)+eCi(Y, X). The sensitivity of A (¢) in
the perturbed model was defined as:

ssi, = 2y
os

log, (=) = log, (0) + gE{w} (12)
Vi Kow,)

t+11 ot

Where ¢ is a small constant, E denotes
expectation, v; and w; are the stationary
reproductive value and population
structure sequences, respectively, and
C. is the function preserving the model
assumptions stated above for small ¢
(Pannell, 1997; Pardo, et al., 2014).

(10)

SPM (accomplished by CEDA and
ASPIC), BSPM, and ASPM

The CEDA (Catch-effort data analysis,
Hoggarth et al., 2006) software package
was used to evaluate the values of
production parameters for the SPM
(surplus production model). ASPIC (A
surplus-production model incorporating
covariates, Prager, 2005) software
package was also used to compare the
parameter estimates, such as K, r, g,
Fumsy (i.e. fishing mortality coefficient
F at maximum sustainable yield). The
BSPM models used in this study was an
extension of the SPM, and model
selection criterion (BIC) was used to
compare the performance among
models (see Zhang et al., 2021 for
details). Bayesian approach has been
increasingly used in  ecological
applications to quantify multiple
sources of uncertainty (Chen et al.,
2000; Peterman et al., 2003; Rivot et
al., 2004; Christensen and Walters,
2004; Vrugt et al, 2009; Su and
Randall, 2012). With the Bayesian
framework, it is more straightforward to
calculate simultaneous credible
intervals for multiple parameters, and to
construct intervals around model
predictions (Cowles and Carlin 1996;
O'Hara and Sillanp&a 2009; WuIff, et
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al., 2012). MCMC techniques bypass
the need to evaluate the high
dimensional integral in  posterior
distribution by generating dependent
values from the posterior distribution
via Markov chains (Jiao et al., 2010).
Programs and Bayesian analysis were
run in Visual Basic for Applications
(Ver 7.1) and R (ver 3.3.3). The
convergence diagnostic analysis for any
model based-upon Markov Chain
Monte Carlo (MCMC) is important,
which supposed that N chains of
MCMC different initial conditions and
the length of G, each chain included m
(Number of parameters) of a vector of
length G for any parameters were
estimated (Gelman and Rubin 1992;
Brooks and Roberts 1998). Based on
the Gelman-Rubin Statistic (1992), the

average variance In
Rw,
— _Zp,t—l,kq
Noow = 4Np,zf1,1<719
_Zp,l—l,kmax
p,t—1,k maxe + N

7o D,k

D,k

Where N is the number of animals, Kmay
is the maximum age-class, R; is the total
number of age-0 animals during year t,
oy IS the proportion of the total number
of age-0 animals that settle to platoon
(p) in size-class | (assumed to be time-

p,t—1,k max—

* —TZpyLk *
qzz SeilV, € Z Dk 190
1

* _TZp,[,/f *
C]tz SV, i Z Dy 1501V
1

the inter-chain/intra-chain were
calculated Scale Reduction Factor
(SRF) method (Gelman et al., 2004;
Han and Carlin, 2011) (see Zhang et al.,
2021 for details). An example of
presentation on how the CTDDM tracks
the total biomass (or numbers)
predicted from the fully age-structured
ASPM accounting (Catalano and Allen,
2010; Cope, 2013; Allen, 2017).

The dynamics of the ASPMs
modeled  population account for
mortality due to fishing and natural
causes as well as growth, recruitment,
and ageing at the end of the year (Quinn
and Deriso 1999; Cope, 2013). The
ASPMs have an annual time step that
leads to the following equation for the
population dynamics for an age-cohort
(Catalano and Allen, 2010; Allen,
2017):

IfA=0
If 1< A<Kpax (13)
-7 .
16 p,t—1,k max—1 |f /(= /qnax
For indexesin numbers
For indexes in mass (14)

variant), Zy, is the total mortality on
animals of age (k) in platoon (p) that are
in size-class | during year t; I is the
model-estimate corresponding to the
index of abundance, S*t,k is the survey
selectivity-at-age for animals of age (k)
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during year t, g is the catchability
coefficient for year t, 7 is the time
during the year corresponding to the
index, and ¢y, is the proportion of fish
of age (k) in platoon (p) that are in size-
class I.

Bayesian surplus production model
(BSPM) used in this study was an
extension of the surplus production
model. The models were used as the
basic model structure (Buckland et al.,
2004; Jiao et al., 2009; Haddon, 2011,
Carruthers et al., 2012):

{E(BM) B, + rB,(In(K) - In(B,)) - C, (15)
EU,))=qB, , r~ N(r,o?)

Where B; and C; are the population
abundance and the total catch in year t,
respectively; @i is the catch-ability
coefficient for i-th type of relative
abundance index U;, r is the population
intrinsic growth rate, and the carrying
capacity (k). The ASPIC (A surplus-
production model incorporating
covariates, Prager, 2005) uses time
series of indices of abundance and catch
biomass to estimate stock status and
uses  bootstrapping to  construct
sampling distribution for a statistic of
interest, e.g. stock status, the biomass
that would provide the maximum
sustainable vyield (Busy and MSY).
CEDA (Catch-effort data analysis,
Hoggarth et al., 2006) software package
was used to evaluate the values of
production parameters for the Fox
surplus production model.

Bayesian information criterion (BIC)
was used to evaluate the performance or
variation among BSPM, CTDDM, and
SPM, which could incorporate the

variation among models (Haddon,
2011), and then the smaller Bayesian
information criterion (BIC) value mean
the better fit.
BIC=-2In (maximum likelihood) + min (n)
(16)
Where m is the number of parameters to
be estimated and n is the number of
data points. Based on the Gelman-
Rubin Statistic (1992), the average
variance in the inter-chain/intra-chain
and the Scale Reduction Factor (SRF)
were calculated as follows:

N(G 1)22(99, o) @an

j=1 g=1

G

N 1
2} _
“NG- 12( IUN&

1:1 g=1

SRF =1 (G —1+E) (19)
G W

Where 6y is the estimated value, 6 is
the mean value of 6 in the whole j
sequence, W is the weighted value of
predictions, and B is the average
variance of the intra-chain (Bowman
and Azzalini 1997; Gelman et al., 2004;
Han and Carlin, 2011). The SRF
significant difference (SRF>1.2 or
SRF<1.0) indicates the parameters
whether achieve the convergence for
that chain (Gelman et al., 2004; Han
and Carlin, 2011).

30,7 (18)

=1 g=1

Results

The BRPs of the southern Atlantic
albacore (T. alalunga) stock were
evaluated using the CTDDM using
catch data (1956-2011) and growth
information for the longline fishery
(Table 2). The model also assessed the
carrying capacity (k), the biomass at
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MSY (Bwsy), and the intrinsic growth
rate (r). The ratios of catch (C) against
MSY (C/MSY), and effort (E) against
Emsy (E/Emsy), of the stock in 2011
were 1.07 and 0.94, respectively. SPM

generated a value for MSY with
80%confidence intervals of 23,630—
27,390 t for this stock. The BZOOQ/BMSY
ratio was 1.18 from ASPIC, and the
Fa009 /Fmsy ratio was 1.42 using CEDA.

Table 2:Summary statistics of Biological Reference Points (BRPs) from the classical SPM
accomplished by software package Catch-Effort Data Analysis (CEDA, Hoggarth et al.
2006) and A Surplus-production Model Incorporating Covariates (ASPIC, Prager 2005).
Summary statistics of model outputs of the CTDDM for the southern Atlantic albacore
fishery; and comparison of the obtained estimates of population parameters (r and k)
and biological reference points (BRPs) using different methods.

Models (using Fox Schaefer

CEDA)

Parameters Normal Long normal Gamma Normal Long normal Gamma

R? 0.653 0.708 0.317 0.506 0.573 0.521

K 190280 178755 8290 158718 118698 118735

q 3.44E-90 3.74E-09 8.38E-09 3.33E-09 4.69E-09 4.59E-09

r 0.403 0.434 0.999 0.725 1.001 1.001

MSY 28242 28520 30497 28778 29697 29697

Ryield 28111 28519 28606 26660 29275 29299

Bao11 74247 75877 104714 74120 75802 100720

Fao11 0.415 0.324 0.302 0.418 0.325 0.301

Fusy 0.386 0.301 0.281 0.386 0.301 0.281

Bumsy 91325 93330 128800 90321 92310 120500

Models (using Fox Logistic

ASPIC)

ByK 0.86 0.86

R? 0.863 0.834

q 3.32E-09 3.18E-09

r 0.2844 0.2844

MSY 28300 28680

Booit 70023 69153

Fao11 0.548 0.556

Fusy 0.386 0.387

Bumsy 32908 81600

Models/BRPs CTDDM BSPM

BSPs Mean (SE)  Median 2.5% 97.5% Mean Median 2.5% 97.5%
guantile guantile (SE) quantile quantile

Fusy 0.163(0.13) 0.161 0.138 0.231 0.18(0.12) 0.182 0.14 0.23

Fo1 0.159(0.13) 0.157 0.125 0.191 0.16(0.12) 0.161 0.12 0.21

Fa011/Fumsy 0.386(0.11) 1.382 1.021 1.713 1.34(0.11) 1.342 1.04 1.62

Buisv/(10%) 15.35(0.12) 14.68 12.4 19.21 15270011 14,94 12.4 19.45

B2011/Bwmsy 0.178(0.11) 1.175 1.087 1.689 1.204(0.11) 1.203 1.102 171

Parameter/BRPs K q Ryeild R?

CEDA 375755 3.74E-10 0.434 28519 0.71

ASPIC 387 300 4.314E-10 0.391 0.86

SPM (Classical) MSY (23 630-29 700) B2011/Busy (0.813-1.02) Fa011/Fusy (0.75-1.07)

ICCAT (used by) MSY (21 500-28 700)

Bao11/Bysy (0.813-1.02) Fao11/Fusy (1.07-1.098)

Note: Ry is the replacement yield, q is the catchability coefficient, and R? is the coefficient of

determination.

The simulation is presented here as an
example to illustrate the convergence of
the diagnostic analysis in relation to the
scale reduction factor (SRF) that was
used to evaluate the convergence of the
Bayesian estimator. Based on prior

input of the above information, the
BSPM was analyzed using the Markov
chain Monte Carlo estimator. The
BSPM obtained MSY with an 80%
confidence interval of 22135-24007 t.
The estimated C/MSY from the BSPM
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was approximately 1.0 for the past few
years, whilst the relative fishing
mortality ratio (Fao11/Fmsy) Was greater
than 1.0. When value of the SRF
coefficient is greater than 1.0, the
Markov chains for the parameters have
converged; in this example, the values
of SRF were 1.0265 and 1.0586. The
BRPs estimates form BSPM analysis of
this fishery are showing the fit of the

Catch fit ALB

o Ol
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1

85%Cls

Catch (1000tonnes)
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o 4

T T T T T T T
1975 1980 1985 1980 1985 2000 2005

Process variation

02

01

Deviationlog(B)
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1

02

T T T T T T T
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cpue

100 (cPUE) 100 (cPUEuq)

predicted to the observed catch, the fit
of predicted to the observed CPUE, the
deviation from observed to predicted
biomass, and an analysis of the log-
CPUE residuals (Fig. 1). BSPM
estimates of the BRPs and fishery
reference  points were used as
benchmarks for the respective CDTTM
estimates.

cpue fit
L

8 Je 2 o Observed
o v}
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Figure 1: Analytical graph for BSPM analysis of the southern Atlantic albacore (T. alalunga)
fishery, showing the fit of the predicted to the observed catch, the fit of predicted to the
observed CPUE, the deviation from observed to predicted biomass, and an analysis of

the log-CPUE residuals.

Population parameters and BRPs from
the SPM, BSPM, and CTDDM are
shown in Table 2. The CTDDM
obtained an MSY with an 80%
confidence interval of 21,510-23,118 t
for this stock. Population parameters

and BRPs obtained from the SPM,
BSPM, and CTDDM are shown in
Table 2. The 80% confidence interval
of MSY obtained from the CTDDM
was 21510-23118t for this stock. A
simulation on the predicted biomass (or
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numbers) from ASPM were carried out (BIC) values for the BSPM, CTDDM,
using fully age-structured information and SPM models were 81.36, 85.21,
to compare with the CTDDM (Fig. 1). and 102.19, respectively (Table 3).

The Bayesian information criterion

Table 3: Summary statistics for model selection results (using BIC) and the MSY estimates (80%
confidence interval, Cl) from the Fox SPM, BSPM, and CTDDM.

Model BIC Negative Log-likelihood
CTDDM 81.36 40.41
BSPM 85.21 4253
Fox Model 102.19 50.19
MSY estimates (80% CI) MSY (80% CI) used by ICCAT
CTDDM 21510-23 118
BSPM 22 135-24 007 21 500-28 700
Fox Model 23 630-27 390
Thus, the CTDDM provides a reliable CTDDM exactly tracked the fully age-
prediction of BRPs for sustainable structured (ASPM) simulation. The
fisheries management comparable with biomasses summed over age for the
that of the classical full stock CTDDM precisely tracked the ASPM
assessment methods. The predicted predictions as the age-time increment
biomass (or numbers) from the became smaller (Fig. 2).
45 5
4 — OO 61 45 — N0 &1
3 s w— 13 Dobary DM 4 w— N (ebay Wiff
3 g
25
[ e m 2
15 15
1 1
0s 0.5
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 3C
Year Year

Figure 2: An example on how the continuous time delay-difference type model tracks the total
biomass/numbers predicted from the fully age-structured ASPM accounting based on
the simulated age-structured data (modified from Walters (2011)).

The CTDDM  provided reliable expected log predictive density for a
prediction of BRPs for sustainable new data point) than that given by the
fisheries management, and used fewer CTDDM, and the expected Lppds (i.e.,
data compared with ASPMs. The log pointwise predictive densities) of
Bayesian information criterion (BIC) the BSPM were higher than for the
values for the BSPM, CTDDM, and CTDDM. A comparison of the needful
SPM were 81.36, 85.21, and 102.19, and optional data information in
respectively (Table 3). The BSPM fits CTDDM vs. other stock assessments
exhibited a lower variance (i.e., the was shown in Table 4. CTDDM used
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fewer data than DDM method in the
analysis process, and provided reliable
prediction of BRPs for sustainable
fisheries  management  (especially

compared with ASPM, the advantages
are more obvious) (Fig. 3).

Table 4: Summary statistics for the needful/optional data information in CTDDM vs. other stock
assessments, and comparison of the estimated sustainable yields (e.g., Byusy) using different
methods for the subject fishery.

Model Effort Catch k B1/k r q Age
CTDDM Optional Needful Optional ~ Optional ~ Needful  Optional Optional
DDM Optional Needful Optional ~ Optional  Optional  Optional  Needful
BSPM Needful Needful Optional ~ Optional ~ Optional  Needful  Optional
ASPM Needful Needful gee_d ful/ Needful Needful ~ Optional  Needful
ptional

Busy estimates
CTDDM 14.35x10*t (CV=0.11)
DDM 15.50x10"t
ASPM \
BSPM (12.40 x10%t, 15.27 x10t)

Note: ASPM represents age-structured population model.

Noedful/
Optional

Allow
Opti 1 Needful

Model/ Biological
reference point

Catch Age K

f effort r q Bl1'K

CTDDM

DDM

BSPM

ASPM

Figure 3: Summary statistics for the needful/optional data information in CTDDM vs. other stock
assessments, and comparison of the estimated sustainable yields from these methods for
the southern Atlantic albacore (T. alalunga) stock.

Discussion

The CTDDM treats recruitment,
growth, and mortality rates as varying
continuously over time and is
considered a theoretical bridge between
simple surplus-production models and
complicated age-structured  models
(Walters, 2011). Hilborn and Walters
(1992) concluded that a delay-
difference model captured cyclic trends
better than the Schaefer model for
fitting catch and CPUE data to Pacific

cod, Gadus macrocephalus (Tilesius,
1810). Various models and approaches
have previously been used to assess T.
alalunga stock, including the SPM,
BSPM, DDM, and ASPM (Yeh et al.,
1990; Sun et al., 2002; Vifas et al.,
2004; Vrugt et al., 2009; ISSF, 2012;
ICCAT, 2013; Liao et al., 2016a; Liao
et al., 2016b). A validation study
showed that the CTDDM produced a
realistic output for yield, biomass, and
BRPs. The catch stabilized at about
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30,000 t from 1988 to 2001, with a peak
of 40,630 t, but has since declined to an
average of 21,000 t over five years
(Zhang et al., 2015). Since the early
2000s, the southern Atlantic stock has
been considered to a have high potential
for development. In the present study,
CTDDM and BSPM obtained 80%
confidence intervals for MSY of
21,510-23,118 t and 21,756-23,408 t,
respectively.

Using an age-structured simulator to
generate ‘true’ values is considered the
most suitable way of validating the
performance of the CTDDM model
(Catalano and Allen, 2010; Cope, 2013;
Liao et al.,, 2016a; Lehodey et al.,
2017). The biomasses (or numbers)
summed over age for the CTDDM did
indeed track the ASPM’s predictions
precisely as the age-time increment
became smaller in the simulator.
Simulations that were carried out using
fully age-structured information
exhibited a different influence on the
estimated values of the parameters.
With the Bayesian framework, it is
relatively straightforward to calculate
simultaneous credible intervals for
multiple parameters, and to construct
intervals around model predictions
(Cowles and Carlin 1996; O'Hara and
Sillanpda 2009; Wulff, et al., 2012). A
Bayesian approach has been
increasingly used in  ecological
applications to quantify multiple
sources of uncertainty (Chen et al.,,
2000; Peterman et al., 2003; Rivot et
al., 2004; Christensen and Walters,
2004; Vrugt et al., 2009). The BSPM
fits exhibited a lower variance (i.e., the

expected log predictive density for a
new data point) than those given by the
CTDDM, but the expected log
pointwise predictive densities from the
BSPM were higher than those from the
CTDDM. The CTDDM provides an
extremely  compact and  exact
simulation of the dynamics of numbers
and biomass for fish populations and
produces reliable predictions of BRPs
for sustainable fisheries management.

The main purpose of this study is to
evaluate the capabilities of the CTDDM
model, which is generally not familiar
to the fisheries science community..
The CTDDM provides an extremely
compact performance of the exact
dynamics of numbers and biomass for
the fish population, which is considered
a theoretical bridge between SPMs and
ASPMs. The CTDDM is not well
known and has not previously been
explored with respect to real fisheries.
This study provides an interesting
attempt to investigate its properties in a
real-world application.
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