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Abstract 

The formation and regulation of vertebrate endogenous intestinal microbiota has been 

widely studied as the microbiota plays a crucial role in the host nutrition, development, 

and health. Despite the importance of microbiota for host health, it is still unclear 

whether the endogenous intestinal microorganisms are genetically distinct or whether 

they are genetically related with each other in different host individuals. In the present 

study, the dispersal situation of the endogenous intestinal bacteria in grass carp was 

investigated by constructing bacterial 16S rRNA gene clone libraries. The results 

indicate that the bacteria harbored in the grass carp gut could be separated into the 

following two groups: a- the private operational taxonomic units (OTUs), which 

include Cetobacterium somerae, Aeromonas jandaei, Citrobacter freundii, 

Achromobacter xylosoxidans and Bacteroides species; b- the shared OTUs, which 

include Vibrio cholerae, Plesiomonas shigelloides and Pasteurella speices. The results 

obtained in this investigation provide valuable information for assessing the mechanism 

of spread of the endogenous intestinal bacteria, especially the pathogenic ones. 

However, the mechanisms involved in different modes of bacterial dispersal in the 

grass carp gut still require further research. 
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Introduction 

The intestinal tract in vertebrates is 

colonized by a vast number of 

microorganisms which have a significant 

impact on the host biology including 

regulation of host nutrients (Stevens and 

Hume, 1998; Hooper et al., 2002; 

Booijink et al., 2010), protection against 

epithelial cell injury (Xu et al., 2003; 

Mazmanian et al., 2005) and maturation 

of the immune system and intestinal 

angiogenesis (Hooper et al., 2001; 

Stappenbeck et al., 2002). The 

significance of the endogenous intestinal 

microbiota is such that some researchers 

have proposed that it be considered as an 

essential “organ” (Hooper et al., 2002; 

Eckburg et al., 2005). It is widely 

accepted that endogenous intestinal 

microbiota have colonized vertebrate 

intestinal tract postpartum and have 

reached a relatively stable state (Favier et 

al., 2002; Hooper et al., 2002). It has 

further been shown that early 

environments of the host can 

significantly affect the endogenous 

intestinal microbiota (Thompson et al., 

2008; Thompson and Holmes, 2009). 

However, it is still unclear whether the 

endogenous intestinal microbiota is 

completely genetically distinct or related 

to each other among different host 

individuals, despite the importance of 

this for assessing the impact of 

antibiotics on the endogenous intestinal 

microbiota, antibiotic resistant bacteria 

diffusivity and re-formation of the 

endogenous intestinal microbiota after it 

has been disturbed by antibiotic 

treatment.  

  There are various ways to analyze the 

connectivity of microorganisms including 

biochemical, genetic and epidemiological 

methods (Pusch et al., 1998; Berchtold et 

al., 1999; Hohl et al., 2013). In this study 

a genetic approach was used to analyze 

the connectivity of endogenous intestinal 

microbiota among different grass carp 

individuals by constructing four clone 

libraries of bacterial 16S rRNA genes. 

 

Materials and methods 

Sampling and pre-processing 

Four fish were caught from an 

aquaculture base located in the middle 

reach of the Yangtse River in China 

(28°49´N, 112°22´E). The fish were 

frozen and transported to a laboratory 

and measurements of the body length and 

weight were taken. They were then 

dissected under sterile conditions to 

remove the intestinal tract. The midguts 

were subsequently cut out and transferred 

to 2.0 ml sterile centrifuge tubes for 

storage at -20ºC. 

 

DNA extraction 

The endogenous intestinal microbial 

DNA was extracted as previously 

described (Ni et al., 2012). 

 

16S rDNA clone library construction and 

sequencing analysis 

The universal bacterial primers 9bfm and 

1512uR were used to amplify the 

near-full-length bacterial 16S rDNA 

fragments by PCR as previously 

described (Mühling et al., 2008). PCR 

products were purified using a DNA 

purification kit (DBI
®

 Shanghai Xinghan 

BioScience Co., Ltd). The purified DNA 

was incorporated into pMD 18-T plasmid 
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vector (Takara, Japan) and introduced 

into E. coli DH5α cells. The cells were 

then cultured and the plasmid isolated for 

sequencing of the inserted fragment. 

DNA sequencing was conducted by 

Shanghai Majorbio Bio-pharm 

Biotechnology Co., Ltd., China.  

 

Data analysis 

All near-full-length sequences excluding 

the vector sequences and the PCR 

primer-binding sites were tested for 

possible chimeric artifacts using the 

Chimera check with Bellerophon 

(version 3) program (DeSantis et al., 

2006). Putative chimeras were excluded 

from further analysis. Sequences from 

both the intestinal clone libraries and the 

public databases were aligned using the 

Clustal X 1.83 program. The resulting 

alignment was inspected and manually 

adjusted using the alignment editor in the 

Bioedit software package. A Phylip 

distance matrix was generated and used 

as the input file for the mothur software 

to determine operational taxonomical 

units (OTUs) with >97% and >99% 

similarity (Schloss et al., 2009). The 

coverages of the clone libraries were 

calculated according to Good's method 

(1953).  

   To estimate whether there is a 

dispersal limitation of a specific OTUs, 

we defined the term of „private OTUs‟ as 

the OTUs just appear in a single sample. 

However, as it is impossible to obtain a 

complete enumeration of all of the 

intestinal microorganisms (Eckburg et al., 

2005), the „private OTUs‟ does not 

certainly mean the OTUs with dispersal 

limitation and it is necessary to assess the 

reliability and validity of the microbiota 

data, especially when the number of 

sequences obtained is insufficient. To 

compensate for this, we introduced a 

probability, pm, for estimating whether 

there is a dispersal limitation of „private 

OTUs‟ in microbiota. The pm was 

calculated using the formula pm = n
-(m-1)

, 

where n and m are the number of samples 

and the number of sequences within the 

private OTU, respectively. In the present 

study, n equals 4, and on the basis of 

pm<0.05, m was much more than 3 

sequences then the private OTU could be 

considered to be dispersal limitation. For 

calculating the proportion of OTUs with 

dispersal limitation, PAL, all of OTUs that 

included less than 4 sequences were 

excluded. PAL was calculated using the 

formula PAL=LOTU TOTU 
-1

, where LOTU 

was the number of OTUs with dispersal 

limitation, and TOTU is the total number 

of OTUs that excluded those including 

less than 4 sequences. 

 

Results 

A total of 438 (103, 103, 107 and 125 

from Sample 1, Sample 2, Sample 3 and 

Sample 4, respectively) high quality 

near-full-length 16S rDNA sequences 

excluding 27 putative chimeras were 

obtained (GenBank accession numbers 

JN032762-JN033199). The length of the 

sequences ranged from 1381 to 1482 

base pairs (bp). It was realized that the 

different strains belonging to a single 

species were divided into different OTUs 

when the OUTs were defined as a group 

of sequences with > 99% similarity. For 

instance, the sequences of Vibrio 

cholerae, Clostridium gasigenes, 
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Citrobacter freundii, and 

Stenotrophomonas maltophilia were 

divided into different OTUs (see Table 1 

in Supporting Information). Therefore,

the threshold was set at the more 

plausible 97%, even though the 

sequences of V. cholerae were still 

divided into different OTUs (Table 1). 

 

Table 1: Phylogenetic affiliation of 16S rDNA gene phylotypes isolated from the gut contents of 

grass carps.  

OTU 
Abundance Closest relative in GenBank  

(accession no.) 

Similarity to the  

closest relative 

Phylogenetic 

group Total 1 2 3 4 

OTU 1 12 10 2 0 0 
Clostridium gasigenes strain DSM 12272 

(NR 024945) 
99% Firmicutes 

OTU 2 1 1 0 0 0 
Clostridium disporicum strain DS1 (NR 
026491) 

98% Firmicutes 

OTU 3 1 1 0 0 0 Clostridium subterminale (NR 041795) 98% Firmicutes 

OTU 4 2 2 0 0 0 
Uncultured Clostridium sp. clone PW11 
(DQ355180) 

96% Firmicutes 

OTU 5 10 8 1 1 0 
Clostridiaceae bacterium JC13 

(JF824807) 
93% Firmicutes 

OTU 6 1 1 0 0 0 
Erysipelotrichaceae bacterium canine oral 

taxon 311 (JN713479) 
93% Firmicutes 

OTU 7 66 22 1 4 
3
9 

Cetobacterium somerae C32 (AB353124) 99% Fusobacteria 

OTU 8 34 5 0 0 
2

9 

Uncultured Clostridium sp. clone Zcy008 

(JQ083411) 
94% Firmicutes 

OTU 9 1 1 0 0 0 
Leptotrichia sp. canine oral taxon 294 

clone ZW130 (JN713461) 
94% Fusobacteria 

OTU 10 3 2 0 0 1 
Shewanella putrefaciens CN-32 
(CP000681) 

99% Proteobacteria 

OTU 11 19 6 7 0 6 
Aeromonas jandaei strain LC205 

(FJ940814) 
100% Proteobacteria 

OTU 12 1 1 0 0 0 Uncultured Neisseria sp. (AM419995) 96% Proteobacteria 

OTU 13 1 1 0 0 0 
Sphingomonas aurantiaca strain MA306a 

(AJ429237) 
99% Proteobacteria 

OTU 14 10 10 0 0 0 
Uncultured spirochete clone 

LiUU-11-182 (AY509522) 
86% Spirochaetes 

OTU 15 1 1 0 0 0 
Uncultured Verrucomicrobia bacterium 
clone BF_73 (HM23835) 

95% Verrucomicrobia 

OTU 16 3 2 1 0 0 
Uncultured planctomycete clone 

KWK1S.17 (JN656748) 
96% Planctomycetes 

OTU 17 41 12 
2

7 
0 2 

Paludibacter propionicigenes WB4 

(CP002345) 
89% Bacteroidetes 

OTU 18 13 3 1 9 0 Bacteroides sp. Tilapia9 (JQ317228) 97% Bacteroidetes 
OTU 19 8 1 7 0 0 Bacteroides massiliensis (AB510703) 92% Bacteroidetes 

OTU 20 19 4 
1

4 
0 1 Bacteroides acidofaciens (AB021157) 87% Bacteroidetes 

OTU 21 3 1 2 0 0 Bacteroides acidofaciens (AB021157) 87% Bacteroidetes 

OTU 22 3 3 0 0 0 
Abiotrophia defectiva strain 99383068 

(AY879306) 
87% Firmicutes 

OTU 23 6 5 0 0 1 Exiguobacterium undae (FN870071) 87% Firmicutes 

OTU 24 2 0 2 0 0 
Merismopedia tenuissima 0BB46S01 
(AJ639891) 

99% Cyanobacteria 

OTU 25 2 0 2 0 0 
Uncultured Firmicutes bacterium 

(CU922533) 
94% Firmicutes 

OTU 26 1 0 1 0 0 
Methylococcaceae bacterium OS501 

(AB636299) 
95% Proteobacteria 

OTU 27 1 0 1 0 0 
Alcaligenaceae bacterium BL-169 
(DQ196633) 

96% Proteobacteria 

OTU 28 1 0 1 0 0 Azospirillum sp. TSA14w (AB542380) 93% Proteobacteria 

OTU 29 3 0 3 0 0 
Uncultured Caulobacter sp. clone O-B73 
(JN886933) 

99% Proteobacteria 

OTU 30 1 0 1 0 0 Brevundimonas vesicularis (AB680247) 99% Proteobacteria 

OTU 31 1 0 1 0 0 Methylobacterium aquaticum (AJ785572) 99% Proteobacteria 

OTU 32 2 0 2 0 0 
Uncultured Nordella sp. clone PLYFP59 

(JN792325) 
98% Proteobacteria 
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   Table 1 (continued): 

OTU 
Abundance Closest relative in GenBank 

(accession no.) 

Similarity to the  

closest relative 

Phylogenetic 

group Total 1 2 3 4 

OTU 33 4 0 4 0 0 
Uncultured Desulfovibrio sp. clone 

AL5IA3 (EU616635) 
99% Proteobacteria 

OTU 34 1 0 1 0 0 
Propionibacterium acnes TypeIA2 

P.acn33 (CP003195) 
99% Actinobacteria 

OTU 35 1 0 1 0 0 Actinobacterium sp. CH9 (FN554394) 96% Actinobacteria 

OTU 36 2 0 2 0 0 
Uncultured planctomycete clone 

KWK1S.17 (JN656748) 
96% Planctomycetes 

OTU 37 3 0 3 0 0 
Uncultured planctomycete clone 
IMS3D25 (JN233032) 

95% Planctomycetes 

OTU 38 1 0 1 0 0 
Uncultured planctomycete clone 

KWK1S.17 (JN656748) 
97% Planctomycetes 

OTU 39 1 0 1 0 0 
Uncultured Pirellula sp. clone XZELH73 

(EU703162) 
95% Planctomycetes 

OTU 40 1 0 1 0 0 
Uncultured planctomycete clone 
KWK6S.87 (JN656824) 

96% Planctomycetes 

OTU 41 2 0 2 0 0 Uncultured planctomycete (FN668205) 98% Planctomycetes 

OTU 42 2 0 2 0 0 Isophaera sp. Schlesner 657 (GQ889437) 89% Planctomycetes 

OTU 43 1 0 1 0 0 
Uncultured Planctomycetaceae bacterium 

YL037 (HM856408) 
94% Planctomycetes 

OTU 44 7 0 7 0 0 Bacteroides acidofaciens (AB021157) 87% Bacteroidetes 

OTU 45 41 0 0 
4

1 
0 Vibrio cholerae strain PIM9 (GQ359963) 99% Proteobacteria 

OTU 46 4 0 0 4 0 Vibrio cholerae strain PIM9 (GQ359963) 99% Proteobacteria 

OTU 47 34 0 0 
1

7 

1

7 
Citrobacter freundii (AB54577) 99% Proteobacteria 

OTU 48 9 0 0 9 0 
Plesiomonas shigelloides strain PIC3 
(GQ359957) 

99% Proteobacteria 

OTU 49 7 0 0 5 2 
Pseudomonas poae strain LS172 

(FJ937922) 
99% Proteobacteria 

OTU 50 6 0 0 5 1 
Stenotrophomonas maltophilia strain 

2681 (HQ185399) 
99% Proteobacteria 

OTU 51 11 0 0 5 6 
Achromobacter xylosoxidans strain M66 
(HQ676601) 

99% Proteobacteria 

OTU 52 9 0 0 7 2 
Alcaligenes faecalis subsp. faecalis strain 
AE1.16 (GQ284565) 

99% Proteobacteria 

OTU 53 1 0 0 0 1 
Uncultured planctomycete clone 

P-B-An-15 (JN867671) 
96% Planctomycetes 

OTU 54 9 0 0 0 9 
Pasteurella aerogenes MCCM 01550 

(AF224288) 
94% Planctomycetes 

OTU 55 1 0 0 0 1 Acinetobacter sp. 5g (EU916711) 99% Planctomycetes 

OTU 56 1 0 0 0 1 
Propionivibrio limicola strain GolChi1 

(NR 025455) 
96% Planctomycetes 

OTU 57 1 0 0 0 1 
Halochromatium sp. MTK6IM088 
(FN293083) 

93% Planctomycetes 

OTU 58 2 0 0 0 2 
Clostridium sticklandii str. DSM 519 

(FP565809) 
98% Firmicutes 

OTU 59 1 0 0 0 1 
Uncultured Clostridium sp. clone PW11 

(DQ355180) 
97% Firmicutes 

OTU 60 1 0 0 0 1 
Blastobacter denitrificans strain IFAM 
1005 (NR 041827) 

99% Proteobacteria 

OTU 61 1 0 0 0 1 
Desulfovibrio desulfuricans strain Ser-2 

(EU980606) 
99% Proteobacteria 

 438 
10
3 

1

0

3 

1

0

7 

1

2

5 

   

The OUTs are defined as a group of sequences with >97% similarity. Bold type shows the OTUs with 

dispersal limitation.

At this threshold, a total of 61 OTUs (23, 

31, 11, and 21 in Sample 1, Sample 2, 

Sample 3, and Sample 4, respectively) 

were detected which belonged to 9 phyla 

including Bacteroidetes, Proteobacteria, 

Firmicutes, Planctomycetes, 

Verrucomicrobia, Lentisphaerae, 

Fusobacteria, Actinobacteria and 

Cyanobacteria (Fig. 1). In the 61 OTUs, 

only 1 OTU (OTU7) was detected from 
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all 4 samples and 4 OTUs (OTU5, 

OTU17, OTU18 and OTU20) were 

detected from 3 samples. They could be 

considered as common species and were 

closest to Cetobacterium somerae C32, 

Clostridiaceae bacterium JC13, 

Paludibacter propionicigenes WB4, 

Bacteroides sp. Tilapia9 and Bacteroides 

acidofaciens in phylogeny, respectively 

(Table 1). Forty one percent (25) of the 

OTUs were detected just once and 70.5% 

(43) of the OTUs were private (Table 1). 

In addition, the coverage of the clone 

libraries 1, 2, 3 and 4 were 60.87%, 

51.61%, 90.91% and 47.62%, 

respectively. These findings suggest that 

there is a considerable amount of rare 

OTUs in the intestinal bacterial 

community of grass carp. 

    The differences of intestinal 

bacterial compositions among different 

individuals are widely studied. For 

instance, Booijink et al. (2010) report 

they detect high temporal and 

inter-individual variation in the human 

ileal microbiota. Lankau et al. (2012) 

prove ecological drift and local 

exposures drive enteric bacterial 

community differences within species of 

Galápagos iguanas. In the present study, 

we also found obvious differences in the 

intestinal bacterial compositions among 

different samples. At the phylum level, 

Firmicutes and Fusobacteria were the 

dominant microorganisms in Sample 1, 

while Bacteroidetes were the dominant 

microorganisms in Sample 2. 

Proteobacteria were the dominant 

microorganisms in Sample 3, but 

Fusobacteria and Proteobacteria were the 

dominant microorganisms in Sample 4 

(Fig. 1). 

 

 

 
 

Figure 1: Bacterial phylum composition in the gut contents of grass carps. 

 

In order to screen the OTUs with 

dispersal limitation, we analyzed the 

OTUs based on the formula pm = 4
-(m-1)

. 

On the basis of pm<0.05, the private 
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OTUs with more than 3 sequences were 

believed to be dispersal limitation. A total 

of 7 OTUs with dispersal limitation were 

detected in the present study, i.e. OTU 14 

from Sample 1, OTU 33 and OTU 44 

from Sample 2, OTU 45, OTU 46 and 

OTU 48 from Sample 3, and OTU 54 

from Sample 4 (Table 1). Because TOTU 

was 22, the proportion of private OTUs, 

PAL, was 31.82%. These OTUs belonged 

to Spirochaetes, Bacteroidetes, 

Planctomycetes, and Proteobacteria 

(Table 1). 

 

Discussion 

Vertebrate endogenous intestinal 

microbiota has attracted extensive 

investigations in recent years (Zoetendal 

et al., 2004; Kinross et al., 2011; 

Shenderov, 2012). It is widely accepted 

that both environmental factors and 

physiological status of host affect the 

structure and function of vertebrate 

intestinal microbiota (Romero and 

Navarrete, 2006; Thompson and Holmes, 

2009; He et al., 2011; Li et al., 2011; Ni 

et al., 2012,2014). Booijink et al. (2010) 

reported that there were inter-individual 

differences in the human ileal microbiota. 

The present study shows there are 

significant structure differences among 

the intestinal microbiota from different 

grass carp individuals living in the same 

habitat. Those differences may be due to 

differences in physiological status of 

individuals. 

   We found that the „shared bacteria‟ 

mostly belonged to Fusobacteria, 

Firmicutes, Bacteroidetes, and a number 

of Proteobacteria, while the „private 

bacteria‟ mostly belonged to Spirochaetes, 

Bacteroidetes, Planctomycetes, and a 

number of Proteobacteria. The results 

implied that endogenous intestinal 

bacteria from different phyla would show 

different responses on the dispersal 

barrier.  

   In the present study, Cetobacterium 

somerae, Aeromonas jandaei, 

Citrobacter freundii, Achromobacter 

xylosoxidans, and a number of 

Bacteroides speices are the „shared 

bacteria‟ from grass carp guts (Table 1) 

and are widely distributed in different 

habitats. For instance, Bacteroides and C. 

somerae have been detected in various 

other host intestinal tracts (Finegold et al., 

2003; Xu et al., 2003; Tsuchiya et al., 

2008; Brugman et al., 2009; Wu et al., 

2010; He et al., 2011; van Kessel et al., 

2011) while A. jandaei has been isolated 

from water, leeches, fish, reptiles, and 

amphibia (Sugita et al., 1994; Sugita et 

al., 1995; Janda and Abbott, 1998; 

Siddall et al., 2007). Other researchers 

have isolated C. freundii from tannery 

effluent and patients (Kumar, et al., 1999; 

Nakano et al., 2004). A. xylosoxidans has 

been found in infected patients and 

aqueous environments (Yabuuchi et al., 

1974; Igra-Siegman et al., 1980; Reverdy 

et al., 1984; Spear et al., 1988; de Baets 

et al., 2007; Wan et al., 2007).  

    These bacteria have been shown to 

play a part in the host's metabolic 

pathways. C. somerae is involved in the 

reduction of oxazolone-induced intestinal 

enterocolitis (Brugman et al., 2009). C. 

somerae can produce acetic acid as the 

major end product of metabolism of 

peptides and carbohydrates (Finegold et 

al., 2003). It can also produce vitamin 
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B12 (Tsuchiya et al., 2008). Bacteroides 

species are known to break down a wide 

variety of indigestible dietary plant 

polysaccharides and to participate in 

responding to environmental cues (Xu et 

al., 2003).  

    They are also associated with a 

number of host diseases. A. jandaei is 

universally recognized to cause 

speticemia (Joseph et al., 1991; Singh 

and Sanyal, 1997; Janda and Abbott, 

1998) whereas C. freundii is associated 

with neonatal bacterial meningitis and 

transmissible murine colonic hyperplasia 

(Schauer and Falkow, 1993; Badger et al., 

1999). Bacteroides species can 

specifically stimulate proliferation of T 

cell of inflammatory bowel disease 

patients and show cross reactivity with 

Bifidobacterium and enterobacteria 

(Duchmann et al., 1999). A. xylosoxidans 

has been described as the etiologic agent 

for a variety of human infections, such as 

pneumonia, peritonitis, meningitis, and 

pharyngitis (Igra-Siegman et al., 1980; 

Reverdy et al., 1984; Gómez-Cerezo et 

al., 2003; de Baets et al., 2007). However, 

Yan et al. (2004) reported that cyclo 

(L-leucyl-L-prolyl) produced by A. 

xylosoxidans can inhibit aflatoxin 

production by Aspergillus parasiticus. 

Due to potent carcinogenic and toxic 

properties of aflatoxins, the complex 

interaction between A. xylosoxidans and 

A. parasiticus and the influence of the 

interaction on the host require further 

research. 

   In the present study, Vibrio cholerae, 

Plesiomonas shigelloides, and 

Pasteurella spp. were the major private 

bacteria in the grass carp guts (Table 1). 

They are also found in other host and 

water environments. For instance, V. 

cholerae is found in the intestinal tract 

and mucus of yellow catfish, the surfaces 

of live copepods maintained in natural 

aqueous environments (Huq et al., 1983; 

Heidelberg et al., 2000; Wu et al., 2010). 

P. shigelloides is a dominant species in 

the intestinal tract of yellow catfish and 

is also present in humans, animals and 

aquatic environments (Foster et al., 2000; 

Gonzalez-Rey et al., 2003; González-Rey 

et al., 2004; Wu et al., 2010). 

Considering the potential ability of these 

organisms to widely disperse, the 

mechanisms causing the bacterial 

dispersal limitation in the grass carp gut 

are still not fully understood. Notably, 

just like the „shared bacteria‟, most of the 

„private bacteria‟ are also associated with 

host diseases. For instance, V. cholerae is 

divided into harmless aquatic strains and 

pathogenic strains, with the pathogenic 

strains causing cholera (Karaolis et al., 

1998; Dziejman et al., 2002; Zhu and 

Mekalanos, 2003). P. shigelloides is 

increasingly regarded as an emerging and 

significant enteric pathogen (Sanyal et al., 

1980; González-Rey et al., 2004). It is 

also reported that P. shigelloides can 

cause diarrhoea in animals (Foster et al., 

2000). In addition, a large number of 

Pasteurella species such as P. multocida 

and P. haemolytica are reported to be the 

causative agents of pneumonia and 

several veterinary diseases (Ackermann 

and Brogden, 2000; Fuller et al., 2000).  

   Since a large number of multiple 

antibiotic resistance genes are harbored 

in the healthy human microbiome 

(Sommer et al., 2009), it is therefore 
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reasonable to suggest that the intestinal 

microbiome of grass carp may also 

constitute a mobilizable reservoir of 

antibiotic resistance genes. The vast 

number of bacteria present in the grass 

carp gut which are associated with 

human and animal diseases, raise the 

potential risk of pathogenic bacteria 

acquiring antibiotic resistance genes with 

severe consequences for humans and 

aquatic animals.  
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