Research Article

Otolith shape analysis of three mudskipper species of Persian Gulf

Ghanbarifardi M.¹*; Zarei R.²

Received: August 2020 Accepted: January 2021

Abstract
The variation in otolith shape of three syntopic species of mudskippers *Boleophthalmus dussumieri*, *Periophthalmus waltoni*, and *Scartelaos tenuis* from the tidal flats of Qeshm Island in Persian Gulf was studied based on Elliptic Fourier Analysis. Principal component analysis and Discriminant analysis could separate the specimens of every species with 100% classification success, which proves the variability of otolith among the three fish species. Cluster analysis produced two main clusters, one cluster encompasses only specimens from *P. waltoni* and the other contains *S. tenuis* and *B. dussumieri*. The result of the present study revealed the power of geometric morphometrics in discriminating the three mudskippers. It is also concluded that otolith traits especially its geometric morphometric could be regarded as an invaluable source of information for paleontology, phylogeny, taxonomy and ecology of fishes.

Keywords: Mudskippers, Persian Gulf, Otolith shape, Elliptic Fourier Analysis

¹-Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
²-Department of plant sciences, Faculty of biological sciences, Alzahra University, Tehran, Iran
*Corresponding author's Email: mehdi.ghanbarifardi@science.usb.ac.ir
Introduction

Fish otoliths are located in the inner ear of bony fishes, where they operate as integral pieces of the hearing and equilibrium organs (Popper and Fay, 2011). They consist of aragonite and develop independently from the skeletal system (Maisey, 1987). Three pairs of otoliths exist - the saccular otoliths or sagittae, the utricular otoliths or lapilli, and the lagenar otoliths or asterisci (Nolf, 1985). In most teleosts, the morphology of sagitta represents a meaningful taxonomic tool for species identification (Tuset et al., 2008; Nolf, 2013), although considerable intraspecific variation can occur, especially when connectivity between populations is restricted (Teimori et al., 2012a; Gholami et al., 2015; Teimori et al., 2018). Furthermore, environmental factors and ecological or behavioral characteristics can influence otolith morphology (Torres et al., 2000; Volpedo and Echeverria, 2003; Lombarte et al., 2010; Gierl et al., 2018; Doustdar et al., 2019).

Elliptical Fourier-shape descriptors have been used to discriminate between species of species-rich genera such as *Sebastes* (Stransky and MacLellan, 2005). Otolith shape analysis of fishes has also been found effective to discriminate stocks of some species such as *Gadus morhua* (Campana and Casselman, 1993), two anchovy species, silver and blue anchovies (Karahan et al., 2014), three populations of *Lutjanus kasmira* (Vignon and Morat, 2010), and 42 rockfish species (*Sebastes* spp.) (Tuset et al., 2016).

Moreover, using otolith morphometric traits has shown geographical variation between populations of *Aphaniops stoliczkanus* from Southeastern Arabian Peninsula (Reichenbacher et al., 2009) and Southern Iran (Teimori et al., 2012a). These characteristics have been used on genus *Aphanis* to differentiate between species and identify new species (Teimori et al., 2012b; Gholami et al., 2014) which revealed its importance in taxonomic and phylogenetic studies.

Some studies investigated otolith shape analyses in the family Gobiidae (Lord et al., 2012; Yu et al., 2014; Bănaru et al., 2017; Lombarte et al., 2018; Gut et al., 2020). Wang et al. (2011) used this method for stock discrimination of spotted tail goby *Synechogobius ommaturus* from the Yellow Sea. Five lineages of the gobionelline-like Gobiidae (sensu Agorreta et al., 2013) were recognized using otolith shape analysis; the outcome revealed that *Pomatoschistus* and *Periophthalmus* lineages were discriminated better than other lineages (Gierl et al., 2018).

Mudskippers (Gobioidei, Gobiidae, Oxudercinae) reside in intertidal and supratidal mudflats and mangroves of Africa, Indian Ocean, and whole Indo-West Pacific region (Murdy, 1989; Jaafar and Murdy, 2017). These fishes encompass ten genera, but only four, namely *Boleophthalmus*, *Periophthalmodon*, *Periophthalmus* and
Scartelaos, spend time on land as part of their daily life cycle (Murdy 1989, 2011). In Persian Gulf and Gulf of Oman, three species of mudskippers live in mangroves and tidal flats: Boleophthalmus dussumieri Valenciennes, 1837, Periophthalmus waltoni Koumans, 1955, and Scartelaos tenuis (Day, 1876) (Polgar et al., 2017). The aims of this study were A) to present and compare otolith shape characteristics of the three mudskippers from Persian Gulf based on Elliptic Fourier analysis, and B) to compare their otolith shape relationships with their phylogenetic relations as revealed by molecular trees of the past studies.

Materials and methods
A total of 34 mudskipper specimens (B. dussumieri, 10 specimens; P. waltoni, 16; S. tenuis, 8) were captured from a station located in Qeshm Island (Dokuhak, 26°59′58″N, 56°09′23″E) during June 2017, Qeshm is the largest Iranian Persian Gulf Island (Fig. 1).

Fish samples were collected using a hand-net during low-tide and transported to the laboratory for further examination. Specimens were identified using morphological characters according to Murdy (1989). Otoliths were removed by dissecting the fish skulls. Otoliths were immersed in 1% KOH solution for 3-4 hours to remove organic debris, which were subsequently put in distilled water for 4-5 hours and then rinsed several times. Left otoliths were photographed using a stereomicroscope and scanning electron microscopy (SEM LEO 1430 VP at the Zoological State Collection Munich, Germany and VEGA3 TESCAN at Alzahra University, Tehran, Iran). A representative image of sagitta (termed otolith in the following) of each
mudskipper species is shown in Figure 2. The outline of the otolith was traced using the softwares tpsUtil v. 1.38, tpsDig v. 2.16 and GMTP (Rohlf, 2006, 2013; Taravati and Darvish, 2010). The x- and y- coordinates of 300 harmonics were obtained from points equally spaced along the otolith's outline using tpsDig v. 2.16, and the TPS files opened in PAST 3.20 (Hammer et al., 2001). The x- and y- coordinates of Fourier harmonics were made invariant to otolith size, rotation and starting position of the tracing of the outline (Ferson et al., 1985; Rohlf and Slice, 1990). Variation in otolith shape was assessed using Elliptical Fourier analysis (Ferson et al., 1985). Principal component analysis, Discriminant analysis and Cluster analysis were run using EFA PC scores with PAST 3.20.

![Boleophthalmus dussumieri](image1) [Scartelaos tenuis](image2) [Periophthalmus waltoni](image3)

Figure 2: SEM photographs of otoliths from the three mudskipper species.

Results

Thirty-four SEM pictures of sagittae otoliths of three mudskippers from Qeshm Island were used to conduct the analyses. The outcome of the principal component analysis (PCA) based on EFA PC scores assigned the specimens of each species to a separate group (Fig. 3). The first four principal components (PCs) accounted for 40.9%, 18.8%, 9.6%, and 5.7% of total variance, respectively. PC1 separated *P. waltoni* from *B. dussumieri*, but with some overlap. PC2 clearly isolated *S. tenuis* from the other two species. Discriminant analysis based on PC scores could recognize every species as a separate group, with 100% classification success (Fig. 4). The first two canonical variates (CVs) accounted for 87.25% and 12.75% of total variance, respectively. CV1 separates *P. waltoni* from *B. dussumieri* and *S. tenuis*. Cluster analysis based on PC scores showed that there were two main clusters, one cluster included of only specimens from *P. waltoni* and the other cluster contained *S. tenuis* and *B. dussumieri* (Figure 5). Cluster analysis recognized *B. dussumieri* and *S. tenuis* as more similar taxa based on otolith shape analysis (yellow line in Fig. 5).
Figure 3: Principal component scores for the otolith shapes of the three mudskipper species, *B. dussumieri*, *P. waltoni* and *S. tenuis*.

Figure 4: Discriminant function scores for the otolith shapes of the three mudskipper species, *B. dussumieri*, *P. waltoni* and *S. tenuis*.

Figure 5: Cluster analysis for the otolith shapes of the three mudskipper species, *B. dussumieri*, *P. waltoni* and *S. tenuis*.

Discussion

In the present study, three mudskipper species from three genera are compared using otolith shape analysis (outline method). *Boleophthalmus dussumieri* and *Scartelaos tenuis* are identified as more similar taxa while *Periophthalmus waltoni* is recognized as a separate clade (Figs. 3 to 5). The body shape of the examined species has been
evaluated by geometric morphometric approach (14 landmarks) in a previous study (Polgar et al., 2017); the resulting PCA scatter plot is similar to the classification of the otoliths of our study; *Periophthalmus waltoni* was separated from *Boleophthalmus dussumieri* and *Scartelaos tenuis* with PC1 (89% of variance).

Molecular studies define *Periophthalmus* lineage within Gobiidae family, which constitutes two traditional subfamilies *Amblyopinae* and *Oxudercinae*, including *Periophthalmus*, *Boleophthalmus*, *Scartelaos* and some other genera (Agorreta et al., 2013; Ghanbarifardi et al., 2016; Polgar et al., 2017). The mentioned studies are in consistent with our result and recognize *Scartelaos* and *Boleophthalmus* as sister taxa and *Periophthalmus* as an isolated genus for all other genera within *Periophthalmus* lineage. Otolith morphometry of mudskippers from Persian Gulf were compared and it is documented that Otolith morphometry were more clearly separated *P. waltoni* from *B. dussumieri*, than *S. tenuis* from either *P. waltoni* or *B. dussumieri* (Ghanbarifardi et al., 2020b). Murdy (1989) used 39 morphological (mostly osteological) apomorphies to conduct a cladistic analysis on Oxudercines. That study puts *Periophthalmus*, *Periophthalmodon*, *Boleophthalmus*, *Scartelaos* in one clade, isolated from other genera of Oxudercinae, which is in contradiction with the result of the present study and molecular examinations (Agorreta et al., 2013; Ghanbarifardi et al., 2016; Polgar et al., 2017). Therefore, the otolith characters differentiate mudskippers phylogenetically better than the other osteological characters. The posterior vertebral column and the caudal skeleton of ten mudskipper species were examined and showed isolation of *Periophthalmus* and *Periophthalmodon* from other mudskipper genera to some extent (Ghanbarifardi et al., 2020a).

Teimori et al. (2012b) have concluded that otolith morphology of *Aphanius* species probably has a higher rate of divergence compared to other morphological traits. Similarly, it seems mudskippers’ otoliths could discriminate mudskippers better than other morphological characters (Murdy, 1989; Ghanbarifardi et al., 2020a).

Otolith characters (the present study), skull bones (Murdy, 1989), the posterior vertebral column and the caudal skeleton of mudskippers (Ghanbarifardi et al., 2020a) have good fossilization potential and could therefore facilitate recognition of fossil species of mudskippers, which are currently unknown. Moreover, these examinations proved that otolith shape analysis along with body shape analysis could be regarded as informative phylogenetic traits that are useful for taxonomic and systematic surveys.

Acknowledgments
The authors are really thankful to Dr. Bettina Reichenbacher and Dr. Zeinab Gholami for their help during lab work.
and editing the manuscript. We would like to express our sincere thanks to University of Sistan and Baluchestan, Alzahra University and Ludwig Maximilians-Universität München, Germany, for Financial support for SEM photographs and field trips. We are indebted to Abdulwahed Pehpuri and Saeed Yaghfoori for their help during field surveys and accommodation.

References

