Growth parameters, mortality rates, yield per recruit, biomass, and MSY of *Rutilus frisii kutum*, using length frequency analysis in the Southern parts of the Caspian Sea

Gheshlaghi P.\(^1\); Vahabnezhad A.\(^2\); Taghavi Motlagh S. A.\(^2\)

Received: March 2011 Accepted: July 2011

Abstract

The growth and mortality coefficient of *Rutilus frisii kutum*, were estimated using length frequency data collected in southern waters of the Caspian Sea during October 2008 to April 2009. The following population parameters were evaluated: length-weight relationship, \(W = 0.004L^{3.258}\), \((r=0.976)\); Von Bertalanffy growth constants, \(W_{\infty}\) (g) = 4192.3, \(L_{\infty}\) (cm) = 70.45, \(K = 0.2\), per year; \(t_0 = -0.75\); total mortality and its components, \(Z = 0.92\), \(M = 0.36\), \(F = 0.56\) per year. The exploitation rate (E) was estimated about 0.6. The current yield per-recruit was estimated to be 279.15 g, which was only 1.2% less than Maximum yield per recruitment that was estimated as \(YPR_{\text{max}} = 287.535\), it means if fishing mortality increases from 0.56 per year to 0.7 per year, the yield will raise by only 1.2%. The current YPR and maximum YPR, which were gained at fishing mortality of 0.7, showed that most kutum individuals are caught before reaching the length of maturity. Therefore, to get a maximum YPR, it is necessary to increase fishing effort, even higher than the optimum level. Keeping kutum fishing at the current level will permit harvest of the sustainable yield and avoid overfishing problems.

Keywords: Biomass, Caspian Sea, mortality, *Rutilus frisii kutum*, Exploitation rate
Introduction
Yield per recruit models examine the trade-off between capturing a large number of fish early in their life span and capturing a smaller number of larger fish later in their life span (King, 1995). The classical Beverton and Holt (1957) yield per recruit model considers the dependence of yield upon growth, age at first capture, and fishing mortality.

Length-based cohort analysis was developed for species that cannot be aged. The principle is the same for age-cohort analysis, but animals are separated into length classes (Jones, 1981). A virtual population denotes the exploited population, and the analysis estimates the population that must have been present to produce the catch. From the observations on the number caught in each age/length group and from independent estimates of the natural mortality, the VPA estimates how many fish there must have been in the sea to account for that catch (Prakarn, 2002).

A morphometric study over the Rutilus frisii kutum was conducted in some selected rivers located in southern Caspian Sea (Abdolhay et al., 2010), last years. R. frisii kutum is a valuable commercial fish in the southern part of the Caspian Sea and has a great demand, due to its good taste and culinary customs of the local people. Its stocks declined mainly due to deterioration of habitats, natural spawning ground, illegal catch and overfishing (Kavan et al., 2009). In the IUCN Red list published in 2000, this species has been listed as Data Deficient species (Taylor and Mittermeier, 2000). This species constitutes about 50% of the annual catch of the bony fishes from Beach Seine fisheries in southern waters of the Caspian Sea (Iranian Fisheries Organization statistical year book, 2009) and it makes up to 60% of yearly fishermen income. In this study, the length frequency data of R. frisii kutum gained from commercial catches in the Southern Caspian Sea (Iranian side) were used to estimate population parameters, yield per recruit, biomass and MSY for sustainable exploitation. This information is necessary to formulate management and conservation policies as well as fishery development for this species in the Southern Caspian Sea in future.

Materials and methods
Length-frequency data of R. frisii kutum was collected from October 2008 through April 2009 from the Beach Seine cooperative fishing, along the southern part of the Caspian Sea (Iranian side). The trade catches of bony fish is commenced at this time of the year. From May to September, catch of bony fishes are forbidden. A total of 16517 specimens of R. frisii kutum were collected. Fork length was measured to the nearest cm and the weight was measured to the nearest g, both presented accompanying with ±SD. Length and weight were pooled from different beach seines by month and grouped into 1 cm length groups. The FISAT II was applied for data analysis (Gayanilo and Pauly, 1997).

The length-weight relationships were estimated from the formula, \(W = aL^b \)

Where:
\(W \) is total body weight (g), \(L \) is the fork length (cm), \(a \) and \(b \) are coefficients of the
functional regression between W and L (Ricker, 1973).

Asymptotic length (L_∞) and growth coefficient (K) of the von Bertalanffy equation for growth in length were estimated by means of ELEFAN-I (Pauly and David, 1981, Saeger and Gayanilo, 1986). The t_0 value estimated using the empirical equation:

$$\log_10(-t_0) = -0.3922 - 0.2752\log_10L_\infty - 1.038\log_10K$$ (Pauly, 1979)

The growth performance of *R. frisii kutum* population in terms of length was compared as:

$$\mathbb{O} = \log_10k + 2\log_10L_\infty$$ (Pauly and Munro, 1984)

Maximum age (t_{max}) was estimated as:

$$t_{max} = \frac{3}{K} + t_0$$ (Pauly, 1983)

$$\log_10 M = -0.0066 - 0.279\log_10 L_\infty + 0.6543\log_10 K + 0.4634\log_10 T$$ (Pauly, 1980)

Where:

L_∞ is expressed in cm and T, the mean annual environmental temperature in °C which is 14°C for the Caspian Sea (Abdolmalaki and Ghaninejad, 2008).

Fishing mortality (F) was obtained by subtracting M from Z and exploitation rate (E) was estimated from $\frac{F}{Z}$ (Gulland, 1971).

The length-based cohort analysis (VPA) by Jones (1984) is applied to estimate stock sizes of *R. frisii kutum* in the Southern Caspian Sea. The values of L_∞, K, M, F, a (constant) and b (exponent) for the species were used as inputs to a VPA analysis (Table 1).

<table>
<thead>
<tr>
<th>Column</th>
<th>Contents</th>
<th>Column</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch</td>
<td>$C(L_t,L_{t+1})$</td>
<td>Exploitation Rate</td>
<td>$\frac{F}{Z} = \frac{C(L_t,L_{t+1})}{[N(L_t) - N(L_{t+1})]}$</td>
</tr>
<tr>
<td>XL (Where L_t lower boundary of the tail length class t)</td>
<td>$XL = [(L_\infty - L_t)/(L_\infty - L_{t+1})]^{32K}$</td>
<td>Total Mortality</td>
<td>$Z = M/(1 - \frac{F}{Z})$</td>
</tr>
<tr>
<td>Number of Survivors (Nt)</td>
<td>$NL = \frac{CI}{2}; NL = (N(L+1) \times XL + CL)XL$</td>
<td>Number at Sea</td>
<td>$(NL - NL + 1)/2$</td>
</tr>
<tr>
<td>Survival Factor</td>
<td>$SL = \frac{NL + 1}{NL}$</td>
<td>Biomass (Kg)</td>
<td>$\frac{NL - NL + 1}{2} \times$ (mean body weight)</td>
</tr>
</tbody>
</table>

The maximum sustainable yield (MSY) for *R. frisii kutum* was also estimated, using Cadima’s formula:

$$MSY = 0.5(Y + MB)$$

Where:

Y is the total catch in a year and B is average biomass calculated from cohort analysis in the same year and M is the natural mortality.

Recruitment length was estimated (L_r), the midpoint of the smallest length group in the catch was taken as length at recruitment (Murty et al., 1992). Relative yield per recruit (Y/R) value as a function
of F was determined from the estimated growth parameters and probability of capture by length (Pauly and Soriano, 1986 cited in Maclean, Dizon and Hosillos, 1986). The following Beverton and Holt (1957) yield per recruit model, written in the form suggested by Gulland (1979), and reviewed in Sparre et al. (1989) was applied for calculating YPR, or providing advice in terms of yield per recruit:

$$ \frac{Y}{R} = F \times \exp[-M \times (t_c - tr)] \times W_\infty \times \left[\frac{1}{Z + K} - \left(\frac{3S}{Z + K} \right) - \left(\frac{3S^2}{Z + 2K} \right) - \left(\frac{S^3}{Z + 3K} \right) \right] $$

Where:

- Y/R is yield per recruit, F is the fishing mortality coefficient, M is the natural mortality coefficient, t_c is the mean age at first capture, tr is the mean age at recruitment, W_∞ is the asymptotic weight, Z is total mortality, K is growth coefficient and S can be estimated from: Length at first capture (L_c) was determined using the equation of:

$$ L_c = \frac{L - K(L_c - L)}{Z} $$

(Beverton and Holt, 1957)

Where:

- L_c is the length at first capture, L' is the mean length of fish in the catch sample, K

and L_∞ are parameters of the von Bertalanffy growth equation and Z is the instantaneous mortality rate.

E_{max}, $E_{0.1}$ and $E_{0.5}$ are estimated by using the first derivative of this function. E_{max} is the exploitation rate at Maximum Sustainable Yield (MSY), $E_{0.1}$ is the rate at Maximum Economic Yield (MEY) and $E_{0.5}$ is the optimum exploitation rate.

Results

Figure 1 indicated the annual catch of *R. frisii kutum* in the southern part of the Caspian Sea (Iranian side) from 1996 to 2007, which showed positive trends with $R = 0.76$.

![Figure 1: Annual catch of *R. frisii kutum* during 1996-2007 in the southern Caspian Sea](image)

For 16517 *R. frisii kutum* samples collected during 2008 to 2009, the fork length ranged 14 to 69 cm collected from fishery. Mean fork length ± SD of the *R. frisii kutum* caught in the southern Caspian Sea over the study period was recorded as 41.5±16.09. The weight of caught fishes (N= 551) varied between 190 to 2370 g with the average of 948.1±0.457g. Figure 2 showed length frequency distribution of
the catch for this species. The highest frequency of catches belonged to the length of class 39-40 cm and lowest belonged to 63-64 cm. As the legal size (standard length) for catching *R. frissi kutum* in the Southern Caspian Sea was 40 cm (Daryanabard et al., 2007), the proportion of fish in aggregated length frequency samples that were below mean standard size was calculated about 52.8%.

![Figure 2: Length frequency distribution of *R. frissi kutum* catches in the Southern Caspian Sea](image)

The length-weight relationship provided a good fit for *R. frissi kutum* data as, $W = 0.0049L^{3.258}$, ($r=0.972$). The b value was not statistically different from 3 (t-test; $P>0.05$),

$$W = 0.0049L^{3.258}$$

Graphic representation of the estimated length weight relationships was given in Figure 3.

![Figure 3: Length-weight relationship of *R. frissi kutum* in the southern part of the Caspian Sea](image)

The K-scan technique indicated L_∞ of 70.45 cm and k value of 0.2 per year. Age at Zero length was estimated as -0.75 year, which gave the Von Bertalanffy growth equation for this species as: $L_t = 70.45 (1-\exp (-0.2(t+0.75)))$

The length-weight relationship was used to convert the asymptotic length ($L_\infty = \ldots$)
70.45 cm FL) to the corresponding asymptotic weight (4192.3 g). The von Bertalanffy equation for growth in weight was described by the following equation:

\[W_t = 4192.3 \left(1 - \exp \left(-0.2 \left(t + 0.75\right)\right)\right)^3 \]

![Figure 4: The von Bertalanffy growth function fitted to size-at-age relationship for R. frisii kutum in the Southern Caspian Sea](image)

The growth performance was estimated as \(\Phi = 2.9 \). *R. frisii kutum* attained their maximum size (\(K = 0.2 \) per year) and had a long life span of 14.25 years. The instantaneous total mortality coefficient (\(Z \)) was estimated from the length of converted catch curve as 0.92. The natural mortality (\(M \)), fishing mortality (\(F \)) and annual mortality (\(A \)) were estimated to be 0.36, 0.56 and 0.60 year\(^{-1}\) respectively. The exploitation rate was estimated as \(E = 0.60 \). The survival rate was estimated to be 0.39% after recruitment to the fishing ground. Weight of fish in each length class and rate of total fishing were calculated by using growth and mortality parameters. The biomass value of *R. frisii kutum* was estimated to be 36124.34 tons (Table 2), which provided the maximum sustainable yield product (MSY) as 13652 tons. The midpoint of lower length classes in the sampled data was used as a length at recruitment which is 14.5 cm and the correspondence age was \(t_r = 1 \) years. The length at first capture (\(L_c \)) was adopted as 29.8 cm and the corresponding age (\(t_c \)) was 2 years. Figure 5 illustrated the yield per recruit plot where \(F_{\text{max}} = 0.7 \) year\(^{-1}\), as the present level of fishing mortality is \(F = Z - M = 0.56 \) year\(^{-1}\).

The Beverton and Holt relative yield per recruit model (Fig. 6) showed that the indices for sustainable yield were 0.278 for optimum sustainable yield (\(E_{0.5} \)), 0.421 for the maximum sustainable yield (\(E_{\text{max}} \)) and 0.355 for economic yield target (\(E_{0.1} \)). The current exploitation rate was estimated 0.6 gained from the analysis of mortality rates, which was already above the maximum, optimum and economic yield indices.

The typical selectivity for *R. frisii kutum* caught in the Beach Seine showed that at least 25% of fish of 31.19 cm FL, 50% of the fish of 33.92 cm FL and 75% of all fish of 36.64 cm FL were retained by the Beach Seine (Fig.7).
Table 2: The calculation procedure of Jones’ length cohort analysis illustrated for R. frisii kutum

<table>
<thead>
<tr>
<th>Length class (cm)</th>
<th>Mid point</th>
<th>Frequency (%)</th>
<th>Weight (kg)</th>
<th>Catch</th>
<th>XL</th>
<th>Number of survivors (Nt)</th>
<th>Survival factor (S)</th>
<th>Exploration rate</th>
<th>Total mortality (Z)</th>
<th>Number at sea</th>
<th>Biomass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-17</td>
<td>15.5</td>
<td>0.07</td>
<td>0.0325</td>
<td>331290</td>
<td>1.05</td>
<td>79329986</td>
<td>0.90</td>
<td>0.04</td>
<td>0.38</td>
<td>21132736</td>
<td>687473</td>
</tr>
<tr>
<td>17-20</td>
<td>18.5</td>
<td>0.15</td>
<td>0.0582</td>
<td>370526</td>
<td>1.05</td>
<td>71381911</td>
<td>0.89</td>
<td>0.05</td>
<td>0.38</td>
<td>20079147</td>
<td>1168058</td>
</tr>
<tr>
<td>20-23</td>
<td>21.5</td>
<td>1.45</td>
<td>0.0953</td>
<td>226161</td>
<td>1.06</td>
<td>63782892</td>
<td>0.86</td>
<td>0.25</td>
<td>0.48</td>
<td>18716570</td>
<td>1783802</td>
</tr>
<tr>
<td>23-26</td>
<td>24.5</td>
<td>2.52</td>
<td>0.1464</td>
<td>255854</td>
<td>1.06</td>
<td>54783315</td>
<td>0.84</td>
<td>0.29</td>
<td>0.51</td>
<td>16995449</td>
<td>2487730</td>
</tr>
<tr>
<td>26-29</td>
<td>27.5</td>
<td>5.32</td>
<td>0.2139</td>
<td>369199</td>
<td>1.07</td>
<td>46106411</td>
<td>0.80</td>
<td>0.41</td>
<td>0.61</td>
<td>15003310</td>
<td>3209630</td>
</tr>
<tr>
<td>29-32</td>
<td>30.5</td>
<td>8.57</td>
<td>0.3006</td>
<td>423063</td>
<td>1.07</td>
<td>37013224</td>
<td>0.76</td>
<td>0.48</td>
<td>0.69</td>
<td>12680446</td>
<td>3811707</td>
</tr>
<tr>
<td>32-35</td>
<td>33.5</td>
<td>12.10</td>
<td>0.4091</td>
<td>438744</td>
<td>1.08</td>
<td>28217630</td>
<td>0.71</td>
<td>0.54</td>
<td>0.79</td>
<td>10186699</td>
<td>4167405</td>
</tr>
<tr>
<td>35-38</td>
<td>36.5</td>
<td>13.38</td>
<td>0.5422</td>
<td>366038</td>
<td>1.09</td>
<td>20162976</td>
<td>0.68</td>
<td>0.57</td>
<td>0.83</td>
<td>7779421</td>
<td>4218318</td>
</tr>
<tr>
<td>38-41</td>
<td>39.5</td>
<td>16.19</td>
<td>0.7029</td>
<td>341670</td>
<td>1.10</td>
<td>13701994</td>
<td>0.60</td>
<td>0.63</td>
<td>0.98</td>
<td>5549399</td>
<td>3900564</td>
</tr>
<tr>
<td>41-44</td>
<td>42.5</td>
<td>13.32</td>
<td>0.8940</td>
<td>221020</td>
<td>1.11</td>
<td>8287509</td>
<td>0.57</td>
<td>0.63</td>
<td>0.96</td>
<td>3658917</td>
<td>3270922</td>
</tr>
<tr>
<td>44-47</td>
<td>45.5</td>
<td>10.89</td>
<td>1.1185</td>
<td>144454</td>
<td>1.12</td>
<td>4760996</td>
<td>0.52</td>
<td>0.64</td>
<td>0.99</td>
<td>2286030</td>
<td>2556874</td>
</tr>
<tr>
<td>47-50</td>
<td>48.5</td>
<td>7.96</td>
<td>1.3795</td>
<td>855462</td>
<td>1.14</td>
<td>2492581</td>
<td>0.47</td>
<td>0.64</td>
<td>1.01</td>
<td>1314946</td>
<td>1813968</td>
</tr>
<tr>
<td>50-53</td>
<td>51.5</td>
<td>4.21</td>
<td>1.6801</td>
<td>371700</td>
<td>1.17</td>
<td>1163738</td>
<td>0.46</td>
<td>0.59</td>
<td>0.88</td>
<td>713836</td>
<td>1199348</td>
</tr>
<tr>
<td>53-56</td>
<td>54.5</td>
<td>2.10</td>
<td>2.0236</td>
<td>153941</td>
<td>1.21</td>
<td>5535056</td>
<td>0.45</td>
<td>0.52</td>
<td>0.75</td>
<td>391707</td>
<td>792655</td>
</tr>
<tr>
<td>56-59</td>
<td>57.5</td>
<td>1.10</td>
<td>2.4131</td>
<td>67621</td>
<td>1.27</td>
<td>240100</td>
<td>0.40</td>
<td>0.47</td>
<td>0.68</td>
<td>212249</td>
<td>512169</td>
</tr>
<tr>
<td>59-62</td>
<td>60.5</td>
<td>0.40</td>
<td>2.8518</td>
<td>20806</td>
<td>1.38</td>
<td>96070</td>
<td>0.37</td>
<td>0.34</td>
<td>0.55</td>
<td>110123</td>
<td>316622</td>
</tr>
<tr>
<td>62-65</td>
<td>63.5</td>
<td>0.20</td>
<td>3.3433</td>
<td>8873</td>
<td>1.66</td>
<td>35295</td>
<td>0.21</td>
<td>0.32</td>
<td>0.53</td>
<td>52758</td>
<td>176385</td>
</tr>
<tr>
<td>65-68</td>
<td>66.5</td>
<td>0.04</td>
<td>3.8907</td>
<td>1384</td>
<td>1.89</td>
<td>7428</td>
<td>0.18</td>
<td>0.23</td>
<td>0.47</td>
<td>13034</td>
<td>50711</td>
</tr>
<tr>
<td>68-71</td>
<td>68.5</td>
<td>0.02</td>
<td>4.2885</td>
<td>837</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Biomass: 36124.34 tonnes
Figure 5: Relative yield per recruit (Y/R) versus fishing mortality (F) for *R. frisii kutum* in the Southern Caspian Sea.

Figure 6: Beverton and Holt’s relative yield per recruit and average biomass per recruit models, showing levels of yield indices: E_{OPT} - optimum yield, E_{MEY} - maximum economic yield, E_{MSY} – maximum sustainable yield and E_{CUR} - current level of exploitation for *R. frisii kutum* in the Southern part of Caspian Sea.
Figure 7: Logistic selection curve showing 25%, 50% and 75% selection length (cm FL) of *R. frisii kutum* (broken lines) from the southern Caspian Sea.

Discussion

Length based stock assessment showed an asymptotic length (L_∞) of 70.45 cm FL and growth curvature (K) of 0.2 year$^{-1}$. These values did not show much difference when compared to the L_∞ and K values estimated by other authors (Table 3). In Iranian Coastal Waters of the Caspian Sea the value of asymptotic length of *R. frisii kutum* ranged from 60 to 72 cm and has showed little difference with its value in 1971, which is 63.2 cm (Abdolmaleki and Ghaninejad, 2000). The asymptotic length of 70.45 cm estimated for Kutum in this study was considerably greater than the maximum observed length of 63 cm and 58 cm (FL) reported before in 2006-2008 (Afraei et al., 2010).

Kutum attained its maximum size slowly (K= 0.2) and had a long life span of 14 years, thus a clear indication of poor growth of Kutum in the Southern Caspian Sea. In our study, maximum recorded fork length and weight were 69 cm and 2370 g respectively, although maximum lengths of 61 cm and 71 cm have been reported (Daryanabard et al., 2007) and (Muus and Dahlstrom, 1968). In contrast, Afraei et al. (2010) reported maximum fork length and weight of 58 cm and 2450 g for Kutum in the Southern Caspian Sea. Difference in length and weight can vary with geographical location that is probably related to factors such as climate, trophic status, diet and exploitation rates (Kohler and Hubert, 1999).
Table 3: Summary of the growth parameters estimated for *R. frisii kutum*

<table>
<thead>
<tr>
<th>Area</th>
<th>Sex</th>
<th>L∞</th>
<th>K</th>
<th>Ø’</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay of Astrabad</td>
<td>F</td>
<td>113.7</td>
<td>0.09</td>
<td>3.04</td>
<td>Berg, 1948-1949</td>
</tr>
<tr>
<td>Bay of Kura</td>
<td>F</td>
<td>130.2</td>
<td>0.08</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>Malyi Kyzylagach Bay</td>
<td>F</td>
<td>80.5</td>
<td>0.18</td>
<td>3.07</td>
<td>Abdorakhmanov, 1962</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>79.0</td>
<td>0.18</td>
<td>3.06</td>
<td></td>
</tr>
<tr>
<td>Anzali Lagoon</td>
<td>F</td>
<td>80.4</td>
<td>0.20</td>
<td>3.12</td>
<td>Ralonde and Razavi, 1972</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>70.6</td>
<td>0.12</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>Anzali Lagoon</td>
<td>F</td>
<td>104.2</td>
<td>0.09</td>
<td>3.02</td>
<td>Holcik and Olah, 1992</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>48.7</td>
<td>0.22</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>Former USSR</td>
<td>F+M</td>
<td>62.2</td>
<td>0.40</td>
<td>3.2</td>
<td>Belyaeva et al., 1989</td>
</tr>
<tr>
<td>Southern Caspian Sea</td>
<td>F+M</td>
<td>58.28</td>
<td>0.26</td>
<td></td>
<td>Daryanabard et al., 2007</td>
</tr>
<tr>
<td>Southern Caspian Sea</td>
<td>F+M</td>
<td>63.0</td>
<td>0.21</td>
<td>2.89</td>
<td>Afraei et al. 2010</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>62.03</td>
<td>0.21</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>54.52</td>
<td>0.27</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>Southern Caspian Sea</td>
<td>F+M</td>
<td>70.45</td>
<td>0.2</td>
<td>2.9</td>
<td>Present Study</td>
</tr>
</tbody>
</table>

*F= female, M= male, USSR= Union of Soviet Socialist Republic, L∞ = asymptotical length (cm), K= growth rate, and Ø’ = growth performance Index

The estimated growth performance (Ø’ = 2.9) showed best concurrence with value obtained by Afraei et al. (2010), also this value existed within the corresponding values in other localities (Table 3). The length-weight relationship of *R. frisii kutum* showed an isometric pattern, since the slope of model was not significantly different from 3 (P>0.05), the parameters of length-weight relationship estimated in the present study fall within the results of the previously reported values in other localities (Table 4).

Table 4: Length-weight relationship of *R. frisii kutum* in the Southern Caspian Sea

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Locality</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004</td>
<td>3.258</td>
<td>Southern Caspian Sea</td>
<td>Present paper</td>
</tr>
<tr>
<td>-</td>
<td>3.02</td>
<td>Southern Caspian Sea</td>
<td>Afraei et al, 2010</td>
</tr>
<tr>
<td>0.0101</td>
<td>3.073</td>
<td>Southern Caspian Sea</td>
<td>Daryanabard et al., 2007</td>
</tr>
<tr>
<td>0.0202</td>
<td>2.850</td>
<td>Terkos Dam, Marmara</td>
<td>Tarkan et al., 2006</td>
</tr>
<tr>
<td>0.0172</td>
<td>2.976</td>
<td>Southern Caspian Sea</td>
<td>Belyaeva et al., 1989</td>
</tr>
<tr>
<td>-</td>
<td>2.30 to 5.50</td>
<td>Southern Caspian Sea</td>
<td>Bagenal, 1978</td>
</tr>
</tbody>
</table>

* a and b are the coefficients of the functional regression between Weight and Length
The total mortality ($Z = 0.92 \text{ yr}^{-1}$) value in this study was lower than the Z values estimated for the same species, which were 1.079 yr^{-1} (Daryanabard et al., 2007). The natural mortality ($M = 0.36 \text{ yr}^{-1}$) did not show much difference as contrasted to the natural mortality (M) estimated for the same species which was 0.3 yr^{-1} (Daryanabard et al., 2007).

The yield per recruit of *R. frisii kutum* (Fig. 6) increased rapidly as fishing mortality increased reaching a maximum value ($MSY/R = 287.535$) at the fishing mortality of $F = 0.7$. At the present value of fishing mortality ($F = 0.56$), age at first capture ($T_c = 2\text{Years}$) and natural mortality ($M = 0.36 \text{ yr}^{-1}$), the current YPR was estimated to be 279.15 g, only 1.2% less than the maximum yield per recruit ($YPR = 287.535$). It means if fishing mortality increased from 0.56 per year to 0.7 per year, the yield will increase by only 1.2%.

The current YPR and maximum YPR which were gained at fishing mortality of 0.7 showed the most Kutum individuals fished before they achieved standard size, therefore to get maximum YPR, it was necessary to increase fishing effort even higher than the optimum level. The result of YPR analysis indicated that although the current fishing mortality was not very high, but most of the Kutum were caught by fishermen before reaching standard size result in losing economic advantage.

Results obtained from the logistic gear selection model suggested 25% of fish of 31.19 cm FL, 50% of the fish of 33.92 cm FL and 75% of all fish of 36.64 cm FL, a condition which can have serious consequences on management of *R. frisii kutum* in the Southern Caspian Sea. As the standard length for capturing Kutum in Iranian waters is 40 cm, the results of logistic gear selection model indicated that most Kutum individuals were caught before they could reach standard length.

We present evidence from yield per recruit models and logistic gear selection model that growth of overfishing of Kutum was unlikely under current fishing logistic gear selection model practices in this part of the Caspian Sea. The current exploitation rate of 0.6 for *R. frisii kutum*, derived from the analysis of mortality rates, was already above the maximum, optimum and economic yield indices. Comparison of this value with 0.61 (Abdolmaleki et al., 2007) and 0.62 (Ghaninejad et al., 2001), put forward that Kutum was exploited optimally in the Southern Caspian Sea.

The calculated stock biomass of *R. frisii kutum* was 1300 tons in 1971 fluctuating between 18489 to 36124.34 tons, during 1990 to 2009 (Abdolmaleki, 2009). In recent years, total catch of this fish had greatly fluctuated due to the disruption of the natural spawning grounds and over fishing. The substantial reduction to $1.298 \text{ metric tons}$, the lowest total catch reported in 1984–1985, could be due to over exploitation of the fishery resources. However, the total catch has increased after the fingerlings release programs started in 1979. The total numbers of *R. frisii kutum* released fingerlings increased from 12 million in 2002 to 187.1 in 2008. The total catch also increased from 6417 metric tons to $14835 \text{ metric tons}$ in years 2002 and 2008, respectively (Abdolhay et al., 2010).

The rate of increasing MSY during the years 1991-2009, noted that these trend
changes were parallel with the trend of change in the total amount of kutum fishing (total legal and illegal fishing). Keeping Kutum fishing at the present level will permit harvest of the sustainable yield and avoid overfishing problems. In conclusion, the yield per recruit model is typically used for management of regulatory fishing mortality in order to obtain sustainable harvests from a stock. These regulations have been historically resulted in harvests with large biomass that were valued in commercial fisheries. We present evidence from yield per recruit models and logistic gear selection model that showed growth of overfishing of kutum was unlikely under current fishing logistic gear selection model practices in this part of the Caspian Sea. On the other hand in our analysis, we have revealed that fishing practices by harvesting under size fish have substantial impacts on the production of Kutum.

References

Gheshlaghi et al. Growth parameters, mortality, yield, biomass, and MSY of kutum,….

Fisheries Society Bethesda, Maryland, USA. 1999.

Muus, B. J. and Dahlström, P. 1968. Süßwasserfische B.L.V Verlagsgesellschaft, München. 224 p. (In German)

Pauly, D. and David, N., 1981. ELEFAN I, a basic program for the objective extraction of growth parameters from length-frequency data. 28, 205-211.

برآورد متفاوت‌های رشد، نرخ مرگ و میر، تولید به ازای احیاء، زیست توده و تحلیل حداقل طول قابل برداشت ماهی سفید در جنوب دریای خزر

پگاه قشلاقی *: آرزو و همای نزاد؛ سید امین 1. تقوی مطلق

چکیده

شاخص‌های ضریب رشد و مرگ و میر ماهی سفید با استفاده از داده‌های طول ماهی در جنوب دریای خزر از تاریخ مهر ماه 1388 تا مرداد ماه 1389 جمع آوری شده است. متفاوت‌های زیاد در ارتباط با جمعیت این ماهی مورد بررسی قرار گرفت. رابطه طول با وزن عبارت است از: $r = 0.976$ و ضریب ثابت رشد و برآورد $W = 0.004 L^3$ 3.258

$W_{\infty}(g) = 4192.3, (cm) = 70.45, K = 0.2, L_{\infty} = 239.7$, ضریب مرگ و میر کل و اجزاء آن $Z = 0.92, M = 0.36, F = 0.56$ در سال می باشد. نرخ بهره برداری (E) حدود 0.4% برآورد گردید. عملکرد فعال تولید در صد و 79/15 گرم بر آورد شده که فقط 1/2 درصد کمتر از حداقل عملکرد صید برداشت شده تخمین زده شده و عبارت است از 353/53 287.3

$YPR_{\max} = 0.26$ پایه که میزان مرگ و میر در صید ماهی سفید از 45/8 در سال 50 درصد افزایش 1/2 درصد افزایش در حال حاضر و ضریب حداقل YPR_{\min} به 0.79 در هر سال خواهد رسید و در اکثر موارد این ضریب نشان می‌دهد که صید ماهی سفید قبل از رسیدن به طول ماهی درست بلوغ بوده است. با برآورد جهت رسیدن به حداقل ضریب YPR، نیاز به تلاش بیشتر در صید حتی بیشتر از سطح مطلوب خواهد بود. حفظ میزان سطح برداشت ماهی سفید و جلوگیری از صید بی‌رو به عنوان مشکلات فعلی می‌باشد.

واژگان کلیدی: زیست توده، دریای خزر، مرگ و میر، ماهی سفید، نرخ برداشت

1. دانش‌های آزاد اسلامی، واحد اندیش که وقایع و تحقیقات تهران، گروه شیلات، تهران، ایران.
2. موسسه تحقیقات شیلات ایران، تهران، ایران. صندوق پستی 2116 14155
3. پست الکترونیکی تویسند: p.gheshlaghi@gmail.com

* پست الکترونیکی تویسند: p.gheshlaghi@gmail.com

1. دانش‌های آزاد اسلامی، واحد اندیش که وقایع و تحقیقات تهران، گروه شیلات، تهران، ایران.
2. موسسه تحقیقات شیلات ایران، تهران، ایران. صندوق پستی 2116 14155
3. پست الکترونیکی تویسند: p.gheshlaghi@gmail.com

* پست الکترونیکی تویسند: p.gheshlaghi@gmail.com

1. دانش‌های آزاد اسلامی، واحد اندیش که وقایع و تحقیقات تهران، گروه شیلات، تهران، ایران.
2. موسسه تحقیقات شیلات ایران، تهران، ایران. صندوق پستی 2116 14155
3. پست الکترونیکی تویسند: p.gheshlaghi@gmail.com

* پست الکترونیکی تویسند: p.gheshlaghi@gmail.com