Virulence of *Aeromonas hydrophila* in Siamese fighting fish (*Betta splendens*) and the bacterium susceptibility to some herbal plants

Kanchan C.¹*; Imjai P.¹; Kanchan N.²; Panchai K.³; Hatai K.⁴

Received: May 2016 Accepted: August 2018

Abstract

Aeromonas hydrophila was isolated from diseased Siamese fighting fish *Betta splendens* Regans. The virulence of *A. hydrophila* to Siamese fighting fish was conducted by intraperitoneal injection of two doses of bacterial suspensions with 7.5×10^7 and 7.5×10^5 cfu per 0.05 ml. The cumulative mortality was observed in high and low dose groups which showed 98.33 and 20 percent, respectively. Moreover, five medicinal plants extracts namely *Centella asiatica*, *Morinda citrifolia*, *Melissa officinalis*, *Piper sarmentosum* and *Terminalia catappa* were determined for antimicrobial activities by broth dilution method. *Terminalia catappa* extract showed highest antimicrobial effect of MIC and MBC (25 and 12.5 mg mL⁻¹), followed by *M. officinalis* and *P. sarmentosum* with the same values of MIC and MBC (12.5 and 25 mg mL⁻¹). Finally, *Centella asiatica* and *Morinda citrifolia* were similarly MIC and MBC (50 and 100 mg mL⁻¹). It was concluded that five medicinal plants can use to inhibit and kill *A. hydrophila* in fish.

Keywords: *Aeromonas hydrophila*, *Betta splendens*, Antibacterial activity, Medicinal plants

¹-Program in Aquaculture Technology, Faculty of Agriculture Technology, Rajabhat Maha Sarakham University, 44000, Thailand
²-Animal Production Technology Program, Faculty of Agro-Industrial Technology, Kalasin University, 46000, Thailand
³-Biology Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, 30000, Thailand
⁴-Borneo Marine Research Institute, University Malaysia Sabah, Malaysia, 88400 Kota Kinabalu, Sabah, Malaysia
*Corresponding author's Email: cmunchan@yahoo.com
Introduction
Siamese fighting fish is an economically major species of ornamental fish in Thailand. As an ornamental fish, the males have more attractive colors and fins (Amiri and Shaheen, 2012). Bacterial diseases are the most common infectious problem of ornamental fish, and the most bacterial infections are caused by gram-negative organisms including *Aeromonas*, *Citrobacter*, *Edwardsiella*, *Flavobacterium* (Flexibacter), *Pseudomonas* and *Vibrio* (Lewbart, 2008; Buller, 2004) genera. Especially, *Aeromonas* species has been documented as a pathogenic organism in ornamental fish (Jagoda et al., 2014). Outbreaks of motile aeromonad septicaemia usually occur whether fish are immune compromised due to unpleasant environment or predisposing factors leading to stresses such as temperature, overcrowding, organic pollution and hypoxia (Anusha et al., 2014). Diagnosis of bacterial diseases of fish required observation of common clinical signs associated with the disease, isolation and identification of the causative bacterial organisms and confirmation with animal inoculation is important to fish culturist and fisheries managers (Abowei and Briyai, 2011). The degree of virulence of its bacterium therefore is importantly studied in the aquaculture filed. Moreover, the most common approach to eliminate bacterial diseases is using antibiotics (Yanong, 2006; Rattanachaikunsopon and Phumkhachorn, 2009). Therefore, mistreatment of any antibiotics can leads to the founding of resistant bacteria and accumulation of antibiotic residues in the environment. The alternative treatment by using some medicinal plants has been investigated for pathogenic bacteria (Harikrishnan et al., 2011; Anusha et al., 2014; Prasad, 2014). The aim of the present study was to study the pathogenesis of *A. hydrophila* against Siamese fighting fish and to study the antibacterial activity of some medicinal plants against mentioned bacteria.

Materials and methods
Fish
Ninety-healthy Siamese fighting fish (average 3.67 g in body weight and 9.72 cm in body length) were used in this study. The experiments were carried out at the Faculty of Agricultural Technology, Rajabhat Maha Sarakham University in April 2014.

Preparation of the inocula
A. hydrophila RMU 5603 isolated from diseased Siamese fighting fish in 2013 was used in challenges. Concentrations of bacterial suspension were adjusted to 7.5×10^7 and 7.5×10^5 cfu per 0.05 mL by compared to the 0.5 McFarland standards.

Experimental infection
Ninety fish (30 fish group) without clinical signs were used for experiment infection. Two groups of fish were challenged with high and low doses of inocula, respectively. Each fish was intraperitoneally injected with 0.05 mL bacterial suspension. The fish in the third group was injected with sterile...
normal saline served as a negative control group. All experiment groups were maintained in 1 L of individual aquarium per fish. Mortalities were recorded every 12 h for 2 weeks post injection with bacterial suspension. Both dead and survived fishes were re-isolated from the kidney for evaluated the etiological evidence of fish. Bacteria were re-isolated and identified by biochemical tests (Buchanan and Gibbon, 1974) and API 20E (bioMerieux, France).

Herbal extracts for in vitro antibacterial activity against A. hydrophila

Five herbal extracts including *Centella asiatica*, *Morinda citrifolia*, *Melissa officinalis*, *Piper sarmentosum* and *Terminalia catappa* were carried out according to Ponnusamy et al. (2010) with slight modification. Briefly, 50 g of each plant powder and 200 mL of 95% ethanol. Then, the aqueous extracts were filtered and concentrated in vacuum at 40 °C using rotary evaporator. These extracts were dissolved in dimethyl sulphoxide to make the final concentrations.

Determination of minimum inhibitory concentration

In order to determining minimum inhibitory concentration (MIC), a serial dilution of each extract (200, 100, 50, 25, 12.5, 6.25, 3.125 and 1.563 mg L⁻¹) were prepared in sterile 96-well microtiter plate. Then, the bacterial suspensions were added to each well and incubated at 30 °C for 18-24 hours according to Prasad (2014) with some modifications. The experiments were conducted in triplicate. The MIC was observed in the minimum concentration of each plant extract that could be inhibited the growth of bacteria.

Determination of minimum bactericidal concentration

Fifty microliter of each clear well were inoculated into Muller Hinton Agar and incubated at 30 °C for 18-24 hours. The experiments were done in triplicate. The MBC was observed in the minimum concentration of each plant extract that could be killed the growth of bacteria.

Results

Mortality

The cumulative mortality of Siamese fighting fish challenged with *A. hydrophila* at 14 days post injection was 98.33 and 20 percent in high and low doses of inocula, respectively. In addition, the mortality in control group was 0 %. The abnormal symptoms were hemorrhage in the vent, protruding scales, exophthalmia and abdomen distention in experimental fish (Fig. 1). The mortality records were corresponded with re-isolation from the kidney of moribund fishes. Thus it seems that *A. hydrophila* was a pathogenic bacteria base on the results of mortality.
Antimicrobial activity of leave extracts against A. hydrophila

Determination of minimum inhibitory concentration and determination of minimum bactericidal concentration

Five medicinal plants extracts namely C. asiatica, M. citrifolia, M. officinalis, P. sarmentosum and T. catappa were used in this study. Crude extracts were performed for antimicrobial activities by broth dilution method. The results showed that the Indian almond (T. catappa) extract had the best antimicrobial effect which revealed MIC and MBC values as 25 and 12.5 mg/ml, respectively. Consequently, M. officinalis and P. sarmentosum had moderately antibacterial activity which recorded the MIC and MBC were 12.5 and 25 mg mL⁻¹, respectively (Table 1). Afterwards, C. asiatica and M. citrifolia showed slightly antimicrobial effect against the A. hydrophila. The MIC and MBC of C. asiatica and M. citrifolia were 50 and 100 mg mL⁻¹, respectively.

<table>
<thead>
<tr>
<th>Medicinal plants leave extracts</th>
<th>MIC (mg mL⁻¹)</th>
<th>MBC (mg mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centella asiatica</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Morinda citrifolia</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Melissa officinalis</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>Piper sarmentosum</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>Terminalia catappa</td>
<td>25</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Discussion

Bacterial diseases are the most important diseases which cause of high morbidity and mortality in ornamental fishes (Barker, 2001). Especially, A. hydrophila is ubiquitous bacteria and opportunistic pathogen for immuno compromised fish. (Lewbart, 2008). Moreover, A. hydrophila was mainly pathogens has been isolated from diseased ornamental fish (Musa, 2008). According to the results of this study the abnormal symptoms were hemorrhage in the vent, protruding scales, exophthalmia and abdomen distention in experimental fish which corresponded with Lewbart (2008) and Jagoda et al., (2014).
pathogenicity results showed that *A. hydrophila* was a pathogenic bacteria to the Siamese fighting fish according to the mortality rate of 98.33% when challenged with 7.5×10^7 cfu 0.05 mL^{-1}. For antimicrobial activity of five medicinal plants against *A. hydrophila* showed that all leaves extracts can be used to treat the *A. hydrophila* infection in the diseased ornamental fish. The MIC of *M. officinalis* and *P. sarmentosum* was 12.5 mg mL^{-1} whereas *T. catappa* at 25 mg mL^{-1} with similar results of Haniffa and Kavitha (2012) which were reported the effective MIC of plant extracts against *A. hydrophila* at MIC value 12.5, 25 and 50 mg mL^{-1}. There have been several reports to determine the antimicrobial effect from the plant sources against the fish pathogens as follow: *Clitoria ternatea* leaves extracts against *A. formican*, *A. hydrophila*, *Bacillus subtilis*, *Escherichia coli*, *Klebsiella pneumonia*, *P. aeruginosa* and *Streptococcus agalactiae* (Ponnusamy et al., 2010). Ruixuan et al. (2013) reported that *Psidium guajava* and *Atractylodes lancea* leaves extracts had an antimicrobial effect to *Photobacterium damsela* which isolated from cultured golden pompano (*Trachinotus ovatus*). Vasanthakumar et al. (2015) has been revealed the antibacterial activity of *Rosa damascena* petal extracts against *A. hydrophila*. In conclusion, five medicinal plants extracts could be applied in the treatment of bacterial infection caused by *A. hydrophila* for reducing the use of antibiotics in fish populations and the environments.

Acknowledgements
The authors are grateful thanks to research grant of Rajabhat Maha Sarakham University for the research support.

References

isolated from freshwater ornamental fish showing signs of septicaemia. *Diseases of Aquatic Organisms*, 109, 127-137.

Haniffa, M.A. and Kavitha, K., 2012. Antibacterial activity of medicinal herbs against the fish pathogen *Aeromonas hydrophila*. *Journal of Agricultural Technology*, 8, 205-211.

Yanong, Y.P.E., 2006. Use of antibiotics in ornamental fish aquaculture. A series from the Department of Program in Fisheries and Aquatic Sciences, Florida Cooperative Extension Service, IFAS extension, University of Florida. Circular 84.