Population growth and reproductive potential of five important fishes from the freshwater bodies of Bangladesh

Alam M.T.1; Hussain M.A.2; Sultana S.3; Hasan M.T.1; Mazlan A.G.4,5; Simon K.D.4,6*; Mazumder S.K.4,7

Received: October 2014 Accepted: October 2016

Abstract
Population growth (length-weight relationship), and reproductive potential (e.g. fecundity, and sex-ratio) of five important fish species (‘mola’: Amblypharyngodon mola, ‘puti’: Puntius sophore, ‘tengra’: Mystus vittatus, ‘shing’: Heteropneustes fossilis and ‘taki’: Channa punctatus) collected from two important fresh water bodies (namely Hilna beel and Beel Kumari beel) Rajshahi, Bangladesh, were studied. Population growth pattern by length-weight relationship \(W=aL^b\) for the species differed, and exhibited positive allometric growth (\(P. sophore\) in Hilna beel), isometric growth (\(A. mola\) and \(C. punctatus\) in Hilna beel) and negative allometric growth (\(M. vittatus & H. fossilis\) in Hilna beel and \(A. mola, P. sophore, M. vittatus, C. punctatus\) and \(H. fossilis\) in Beel Kumari beel). The results denoted that fecundity of mature females followed a non-linear relationship \(F=aL^b\) with total length and exhibited positive allometric growth (\(b>3\)) with some exception (\(A. mola\) in Hilna beel and \(M. vittatus\) in Beel Kumari beel). Fecundity of mature females also increased with total body weight and ovary weight following a linear relationship \(F=a+bW\). Differences in values of sex-ratios with seasons for all species in this study may have resulted from different environmental factors as well as breeding seasons. The findings of this study would be useful in imposing adequate regulations for the conservation of these fascinating fishes in the fresh water bodies of Bangladesh.

Keywords: Beel, Fecundity, Sex-ratio, Length-weight relationship, Small indigenous fish

1-Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh.
2-Department of Fisheries, Rajshahi University, Bangladesh.
3-Department of Zoology, Rajshahi University, Bangladesh.
4-Marine Ecosystem Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, D. E., Malaysia.
5-Institute of Tropical Aquaculture, University of Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia.
6-School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, D. E., Malaysia.
7-Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, Bangladesh.
*Corresponding author's Email: sabujsau@gmail.com, skmazumder.arm@sau.ac.bd
Introduction
Inland open water fishery resources play a significant role in the economy, culture, tradition and food habits of the people of Bangladesh (Kibria and Ahmed, 2005). There are 260 recorded indigenous freshwater bony fish species within 145 genera and 55 families (Craig et al., 2004). *Amblypharyngodon mola* (Hamilton, 1822), *Puntius sophore* (Hamilton, 1822), *Mystus vittatus* (Bloch, 1794), *Channa punctata* (Bloch, 1793), and *Heteropneustes fossilis* (Hamilton, 1822) are small indigenous fish species of Bangladesh and important target species for the small-scale fishermen, who use a variety of traditional fishing gear (Craig et al., 2004; Kibria and Ahmed, 2005). They occur widely throughout the Indian subcontinent including Bangladesh, India, Pakistan, Sri Lanka, Nepal and Bhutan, but have also been reported from Myanmar, Malaysia, Laos, Vietnam and Cambodia (Froese and Pauly, 2006). Also found in canals and irrigation channels, these species usually inhabit marginal vegetation in lakes and swamps with muddy substrates and feed on plants, shrimps, insects, mollusks and fishes (Bhatt, 1971; Pethiyagoda, 1991). These species are dominant fish species in the two wetland water bodies namely Hilna beel and Beel Kumari beel (north western Bangladesh). The small indigenous fish species of Bangladesh have high nutritional value in terms of protein, micronutrients, vitamins and minerals not commonly available in other foods (Ross et al., 2003).

The relationship between length and weight of fish species is important and it is extensively used for: (1) estimation of weight from length due to technical difficulties and the amount of time required to record weight in the field (Kolher et al., 1995); (2) conversion of growth in length equations to growth in weight for use in stock assessment models (Stergiou and Moutopoulos, 2001; Özaydin and Taskavak, 2007); (3) estimation of the biomass from length observations (Anderson and Gutreuter, 1983; Petrakis and Stergiou, 1995); and (4) estimation of condition factors of the aquatic species (Petrakis and Stergiou, 1995).

A precise knowledge of fecundity of a fish is also important to evaluate its life history, commercial catch, artificial propagation, culture practice and proper management of the fishery (Afroze and Hossain, 1983; Rahman et al., 2002). The reproductive capacity of a fish population is the function of the fecundity of females (Shafi and Mustafa, 1976). Variation in fecundity is very common among the same species of fish depending on their size, age and environmental conditions (Lagler et al., 1977). Fecundity is also related to length, somatic and gonadal weight.

The foregoing literature clearly shows that though there is some information on the different aspects of reproductive biology of these species, reports on fecundity, relation to different growth parameters and seasons, their sex-ratios of these small indigenous species (SIS) of fishes are not available in any wetland of Bangladesh. So, it is essential to update present knowledge on these aspects for proper management of these species. Thus the objectives of
this study were to study the population growth (LWR), fecundity and sex ratio of five important small indigenous fishes (mola: *A. mola*, puti: *P. sophore*, tengra: *M. vittatus*, taki: *C. punctatus* and shing: *H. fossilis*) collected from Hilna beel and beel Kumari beel, Rajshahi Bangladesh.

Materials and methods

Field sampling

The fishes were collected monthly from April to October 2008 from Hilna beel and Beel Kumari beel, Rajshahi, the northwest part of Bangladesh (Fig. 1). These beels are basically floodplains and they cover about 1500 and 996 ha in the rainy season and 160 and 156 ha in the dry season. A total of 1123 of *A. mola*, 1012 of *P. sophore*, 1180 of *M. vittatus*, 678 of *C. punctatus* and 254 of *H. fossilis* were collected using traditional fishing gear like three-layered trammel nets, cast nets, scoop nets, and traps. The mesh sizes (stretched length) of the trammel and cast nets were 4.2, 6.5, 7.5, and 2.0 cm. Mesh size of the scoop net was 1.5 cm. The length of the net was 20 m for trammel nets, 250 cm for the cast nets, and 40 cm for the scoop nets. The size of the trap was 80 cm×80 cm×90 cm (length×width×depth). The mesh size of the net used in the trap was 1 cm². Specimen identification was carried out in the field according to Jayaram (1981) and Talwar and Jhingran (1991). After collection, specimens were washed well, confirmed to the species level and then tagged and preserved by date in plastic jars with 10% (w/v) formalin (Simon and Mazlan, 2010).

Figure 1: Maps indicating study areas. Closed circle and arrow denotes sampling site (Hilna beel and Beel Kumari beel) (Alam et al. 2014).
Length-weight relationship
Population growth of the five species from two beels was estimated based on the LWR analysis. The LWR was calculated using the expression: $W= aL^b$ (Ricker, 1973), where the W is the body weight in g, L is the total length in cm, a is the intercept and b is the slope (Beverton and Holt, 1996). Parameters a and b were estimated using a non-linear regression for which curve fitting was carried out by a non-linear iterative method using Levenberg-Marquardt and Simplex algorithms for obtaining best convergence χ^2 goodness of fit values using a computer programme, Microcal Origin™ Version 6.0 (Simon and Mazlan, 2008; Mazumder et al., 2015, 2016, 2018). Additionally, 95% confidence limits of b and the coefficient of determination r^2 were estimated. A t-test was performed to test whether the computed value of b was significantly different from 3.0, indicating the type of growth: isometric ($b=3.0$), positive allometric ($b>3.0$), or negative allometric ($b<3.0$) (Spiegel, 1991). In all cases a statistic significance of 5% was adopted (Simon et al., 2011).

Fecundity and sex-ratio
The gonads of fishes were removed intact and placed in 5% (w/v) formalin which not only preserved the ovary but made it much easier to separate the eggs from the ovarian wall (Shafi and Quddus, 1974; Simon et al., 2012). The length and weight of the ovary was measured using measuring scale and electronic balance (Model: KD-300KC to an accuracy of 0.01g). Excess moisture of the ovaries was removed by using blotting paper before weighing.
A total of 100 gravid females of each fish species (e.g. A. mola, P. sophore, M. vittatus, C. punctatus and H. fossilis) for each beel (Hilna and Kumari) were studied for the estimation of fecundity. The most accurate method of enumeration of fish eggs is by an actual count (Lagler, 1966) which is followed for 5 randomly taken fishes to estimate the fecundity for each species and beel, whereas in others the gravimetric method was followed to determine the fecundity according to Lagler, (1966). The relationship of fecundity with total length (TL) was measured by non-linear relationship ($F=aL^b$) (Simon et al., 2012) whereas relationship of fecundity to body weight (BW) and gonad weight (GW) was estimated by the linear relationship ($F=a+bW$) (Zamidi et al., 2012).

Results
Length-weight relationship
A total of 1000 specimens of 5 fish species (A. mola, P. sophore, M. vittatus, C. punctatus and H. fossilis) from two different water bodies were sampled. The detail of sample sizes of Hilna and beel Kumari beels are described in Table 1.
Table 1: The length (TL, cm) weight (BW, g) and sample sizes (n=number of fish species) of collected fish species from two different beels of Rajshahi, Bangladesh.

<table>
<thead>
<tr>
<th>Name of Beels</th>
<th>Species</th>
<th>n</th>
<th>Length (Mean±SD)</th>
<th>Weight (Mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilna beel</td>
<td>A. mola</td>
<td>100</td>
<td>4.9±0.852</td>
<td>0.58±1.308</td>
</tr>
<tr>
<td></td>
<td>P. sophore</td>
<td>100</td>
<td>7.9±1.113</td>
<td>4.95±33.64</td>
</tr>
<tr>
<td></td>
<td>M. vittatus</td>
<td>100</td>
<td>9.1±1.158</td>
<td>9.9±24.78</td>
</tr>
<tr>
<td></td>
<td>C. punctatus</td>
<td>100</td>
<td>13.0±1.334</td>
<td>32.2±126.32</td>
</tr>
<tr>
<td></td>
<td>H. fossilis</td>
<td>100</td>
<td>14.1±2.297</td>
<td>32.2±78.89</td>
</tr>
<tr>
<td>Beel Kumari beel</td>
<td>A. mola</td>
<td>100</td>
<td>5.1±0.739</td>
<td>2.09±4.81</td>
</tr>
<tr>
<td></td>
<td>P. sophore</td>
<td>100</td>
<td>7.6±1.245</td>
<td>4.97±33.47</td>
</tr>
<tr>
<td></td>
<td>M. vittatus</td>
<td>100</td>
<td>9.2±1.108</td>
<td>9.9±23.9</td>
</tr>
<tr>
<td></td>
<td>C. punctatus</td>
<td>100</td>
<td>13.1±1.556</td>
<td>33.01±129.92</td>
</tr>
<tr>
<td></td>
<td>H. fossilis</td>
<td>100</td>
<td>16.2±2.247</td>
<td>36.9±71.32</td>
</tr>
</tbody>
</table>

The intercept a and r^2 for Hilana beel and Beel Kumari beel of A. mola, P. sophore, M. vittatus, C. punctatus and H. fossilis are shown in Figure 2a-2e. In Hilna beel the values of the slope or exponent b for A. mola and C. punctatus were 3.0760 and 3.0537 close to 3.0 ($p>0.05$), showing isometric growth pattern (i.e., changing the body form following the cube law (volume=L3)) (Fig. 2a and 2d) for P. sophore the b was 3.725 was significantly ($p<0.05$) higher than 3 (Fig. 2b), exhibiting a positive allometric growth indicating that weight increases faster than length; and for M. vittatus, and H. fossilis the b was 1.50165, and 2.2669, respectively showing negative allometric (b<3.0) growth (Figs. 2c and 2e). In Beel Kumari beel the value of b for P. sophore 3.320 was significantly ($p<0.05$) higher than 3 (Fig. 2b); and for A. mola, M. vittatus, C. punctatus and H. fossilis the b was 1.98308, 1.51793, 2.5598 and 2.38783, respectively showing negative allometric (b<3.0) growth (Figs. 2a, 2c, 2d and 2e).

Fecundity

In the present study, the ovaries were found to occupy 65-90% of the abdominal cavity, showing its external prominence by the swollen abdomen in most cases. In some cases, ovaries were found to be reduced in size like an empty bag. Estimated fecundity ranged from 1110 to 6802 eggs in Hilna beel and 988 to 5026 in Beel Kumari beel for A. mola females; for P. sophore females fecundity ranges from 3263 to 21347 eggs in Hilna beel and 2920 to 20801 in Beel Kumari beel; for M. vittatus females fecundity ranges from 2491 to 10731 eggs in Hilna beel and 2436 to 10676 in Beel Kumari beel; for C. punctatus females fecundity ranges from 2556 to 20477 eggs in Hilna beel and 2202 to 20272 in Beel Kumari beel; and for H. fossilis females fecundity ranges from 1436 to 27834 eggs in Hilna beel and 5569 to 20429 in Beel Kumari beel. The fecundity of mature females increased with total length (TL), total body weight (BW) and
ovary weight (OW) (Fig. 3).

Figure 2: Length-weight relationships between two beels of (a) *Amblypharyngodon mola*, (b) *Puntius sophore*, (C) *Mystus vittatus*, (d) *Channa punctatus* and (e) *Heteropneustes fossilis*.
Figure 3: Relationship between fecundity and total length (a_1-a_5), body weight (b_1-b_5), ovary weight (c_1-c_5) of (1) Amblyphtyngodon mola, (2) Puntius sophore, (3) Mystus vittatus, (4) Channa punctatus and (5) Heteropneustes fossilis collected from Hilna beel and beel Kumari Beel, respectively.

Solid bar represents non-linear fit in Hilna beel and dot bar represents non-linear fit in Beel Kumari beel in Figs. a_1-a_5, while solid bar represents linear fit in Hilna beel and dot bar represents liner fit in Beel Kumari beel in Figs. b_1-b_5 and Figs. c_1-c_5.

Sex-ratio

The results of the sex-ratio for the five adult species are presented in Table 2. The male to female ratio of *A. mola* was highest in May followed by June, September, October, July and August subsequently in both the beels. The ratio of *P. sophore* was highest in June followed by July, September, October, May and August subsequently in Hilna beel. But in Beel Kumari beel, it was in June-July and followed by September, May, October, August and April. The ratio *M. vittatus* was highest in June followed by July, August, September, May, October and April subsequently in
Hilna beel, but in Beel Kumari beel, it was highest in July followed by June, August, September, May, October and April subsequently. In case of C. punctatus the ratio was highest in July followed by June, August, September, May, April and October subsequently in Hilna beel, but in Beel Kumari beel, it was highest in June followed by July, August, September, April, May and October subsequently. And for H. fossilis the ratio was highest in June followed by July, May, August, September, October and April subsequently in Hilna beel, whereas in Beel Kumari beel, it was highest in June followed by July, May, August, September, April and October subsequently.

Discussion

Length-weight relationship

In the current study, we observed that the slopes or exponents b for P. sophore in both beels were significantly (p<0.05) higher than 3.0, reflecting a positive allometric growth, whereas for A. mola and C. punctatus in Hilna beel, the values of exponent b were close to 3.0 (p>0.05), showing isometric growth pattern but for M. vittatus and H. fossilis in Hilna beel and for all five species in Beel Kumari beel the values of b were significantly (p<0.05) lower than 3.0, showing negative allometric growth. The estimates of the parameter b, varying between 2 and 4 (Bagenal and Tesch, 1978), remain within the expected range (3.076~3.465) except for M. vittatus tengra in both beels (≈1.5 in both beels), with a mean b value of 2.445 (±0.828) for all the species. A high degree of positive correlation between total length and total weight of all species in both beels is indicated by high values of correlation coefficient \(r^2 \). To the best of the knowledge of the authors the length-weight relationships of A. mola, P. sophore, M. vittatus, C. punctatus and H. fossilis have not been previously recorded in these water bodies. However, we compared our results with the studies dealing with these five species from different regions (Table 3).

<table>
<thead>
<tr>
<th>Months</th>
<th>Hilna beel</th>
<th>Beel Kumari beel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. mola</td>
<td>P. sophore</td>
</tr>
<tr>
<td>April</td>
<td>1: 1.79</td>
<td>1 : 1.16</td>
</tr>
<tr>
<td>May</td>
<td>1: 5.28</td>
<td>1 : 2.37</td>
</tr>
<tr>
<td>June</td>
<td>1: 4.94</td>
<td>1 : 3.33</td>
</tr>
<tr>
<td>July</td>
<td>1: 4.00</td>
<td>1 : 3.07</td>
</tr>
<tr>
<td>August</td>
<td>1: 2.08</td>
<td>1 : 1.95</td>
</tr>
<tr>
<td>September</td>
<td>1: 4.23</td>
<td>1 : 3.00</td>
</tr>
<tr>
<td>October</td>
<td>1: 4.10</td>
<td>1 : 2.60</td>
</tr>
</tbody>
</table>
However, as a result of the size-selective characteristics of fishing gear, the samples may not have included all the available lengths. For more precise weight estimations, the application of these length-weight relationships should be limited to the observed length ranges; otherwise it may be erroneous.
Even though the change of b value depends primarily on the shape and fatness (size) of the species, various factors may be responsible for the differences in parameters of the length-weight relationships among seasons and years, temperature, salinity, food (quantity, quality and size), sex, time of year, and stage of maturity (Pauly, 1984; Sparre, 1992). The parameter b, unlike the parameter a, may vary seasonally, even daily, and between habitats (Bagenal and Tesch, 1978; Gonçalves et al., 1997; Taskavak and Bilecenoglu, 2001; Özaydin and Taskavak, 2007). Thus, the length-weight relationship in fish is affected by a number of factors including gonad maturity, sex, diet, stomach fullness, health, and preservation techniques as well as season and habitat; however, none of them were taken into consideration in the present study.

Fecundity

In the present study, the fecundity of $A. mola$ varied from 1260.33±129.073 to 6320.06±322.069 in Hilna beel and from 1142±116.634 to 4756.32±165.16 in Beel kumari beel for the size range of 4.6-5.5 cm and 7.6-8.5 cm, respectively. Kohinoor (2000) found the fecundity of $A. mola$ varying from 1023 to 6823 which is slightly higher than that of the present study. Afroze and Hossain (1990) who recorded the minimum and maximum fecundity of $M. vittatus$ at 2534 and 60746 but which was slightly higher than Azadi et al. (1987) who reported it as 2515 to 9789. Bhatt et al. (1977) observed the fecundity of the freshwater $M. cavasius$ (ham.) to vary from 3314 to 63165. The fecundity of $C. punctatus$ varied from 3917.83±989.205 to 19220.83±844.689 in Hilna beel for the size group of 13.0-13.9 and 17.0-17.9 cm, respectively and from 1021 to 13815 which is higher than that reported by Afroze and Hossain (1990). So, it may be concluded that its fecundity is decreasing day by day and attention should be drawn to it. In the present investigation, the same size fishes were found to have different fecundity and also larger sized (total length) fish were found to have lower fecundity than that of smaller sized fish. Bhuiyan and Bhuiyan (1987) also found same sized fish bearing different number of eggs in *Channa striatus*.
from 2807±517.929 to 20260.5±16.263 in Beel Kumari beel for the size range of 12.1-10.0 cm and 17.0-17.9 cm, respectively. Hossain (1982) found the fecundity of *C. punctatus* to vary from 2092 to 20202 which is more or less similar to the present findings. Rahman (1982) estimated the fecundity of *C. punctatus* from 1690 to 12784. Latifa et al. (2002) observed that the fecundity of *Channa striatus* ranged from 3,454 to 20,568, and the observed fecundity of *H. fossilis* varied from 3365.14±734.070 to 24320.25±2493.924 in Hilna beel for the size group of 14.1-16.0 and 24.1-26.0 cm, respectively and from 4949.43±1187.380 to 18341.25±1599.989 in Beel Kumari beel for the size range of 16.1-18.0 cm and 22.1-24.0 cm, respectively. Bhatt et al. (1977) observed the fecundity of *H. fossilis* from 1375 and 46737 in the plains of Northern India which is higher than that reported in the present study.

The relationship between fecundity and total length was non-linear with positive and high correlation in all species and the two beels, whereas relationship between fecundity to body weight and gonadal weight was linear and highly correlated. Hoque and Hossain (1993) stated a positive correlation of fecundity of *M. vittatus* with total length, body weight and gonadal weight but Kohinoor (2000) found a curvilinear relation of fecundity with total length. Azadi et al. (1987) found a positive and highly significant correlation of fecundity with gonad weight, a positive correlation with total length and a significant correlation with body weight of *M. vittatus*. They found fecundity to bear a linear relationship with body weight and ovary weight. So it is more or less similar to the present results whereas Rahman (1982) found the fecundity of *C. punctatus* were positive and significantly correlated with total length, standard length, body weight and gonadal weight and positive and highly significantly correlated with gonadal length. This is also more or less similar to the present findings.

Sex ratio

The result of the sex-ratio for adult *A. mola* varied from 1:1.79 to 1:5.28 in Hilna beel and from 1:2.01 to 1:5.01 in Beel Kumari. The results may indicate that the *A. mola* breeds twice a year; once in May-June and again in September-October. Afroze and Hossain (1990) found the male and female ratio of *A. mola* was 1:6.7. They also found that *A. mola* spawns twice a year. For *P. sophore* the ratio varied from 1:1.16 to 1:3.33 having two peaks one in June and the other in September in Hilna beel and from 1:2.01 to 1:5.01 having two peaks, one in June-July and the other in September in Beel Kumari beel. The results may indicate that the *P. sophore* breeds twice a year; once in June-July and again in September. Latifa and Nahar (1987) noted that the sex ratio of *P. stigma* was 2:3. The sex-ratio for adult *M. vittatus* varied from 1:1 to 1:3.12 having a trend of increasing from April to June and then decreasing by October in Hilna beel and from 1:1.01 to 1:3.26 having a trend of increasing from April to July and then decreasing by October in Beel Kumari beel indicating that the *M. vittatus* has a
breeding season extending from April to October with a peak in June-July. Fatema et al. (1997) stated that the breeding season for *Oxygaster bacaila* is from April to August with the peak in June-July. Bhuian *et al.* (1999) noted the spawning season of *Clupisoma atherinooides* continued from May to September with a peak in July. For adult *C. punctatus* the male to female ratio varied from 1:0.89 to 1:1.13 having a trend of increasing from April to July and then decreasing by October in Hilna beel and from 1:0.9 to 1:1.2 with a peak in June in Beel Kumari beel also indicating that *C. punctatus* has a breeding season extending from May to September with a peak in June. Hossain (1982) found the male:female ratio of *C. punctatus* 1:0.97 which is slightly lower than the present study is perhaps due to the collection of samples during the breeding season whereas in the other case, it was round the year. And for *H. fossilis* the ratio varied from 0.92 to 1.94 having a trend of increasing from April to June and then decreasing until October in Hilna beel and from 1:1 to 1:2.03 having a trend of increasing from April to June and then decreasing until October in Beel Kumari beel. The results may indicate that the breeding season of *H. fossilis* extends from April to October with a peak in June. It is clear that females were predominant in this study. Rahman (1982) also reported such dominancy of the female of *Lepidocephalus guntea* in natural populations. In conclusion, this study has provided first basic and baseline information on the LWR, fecundity and its relationship with total length, body weight gonadal weight and sex ratios in different seasons of five commercially important indigenous fish species *A. mola, P. sophore, M. vittatus, C. punctatus* and *H. fossilis* that would be helpful for fishery biologists, managers and conservationists to impose adequate regulations for sustainable fishery management and conservation of biodiversity for these two most important wetland beels in the northwest part of Bangladesh.

References

Azadi, M.A., Islam M.A. and Dev,

Bhatt, V.S., Dalal, S.G. and Abidi, S.A.H., 1977. Fecundity of the freshwater catfishes Mystus seenghala (Sykes), Mystus cavasius (Ham), Wallagonia attu (Bloch) and Heteropneustes fossilis (Bloch) from the plains of Northern India. Hydrobiologia, 54(3), 219-224.

Alam et al., Population growth and reproductive potential of…

Bulletin, 93, 412-418.

Rahman, M.K., 1982. Some aspects of...

