Probiotic potential of *Lactobacillus* sp. strains capable of phytate breakdown isolated from dairy products for using in rainbow trout (*Oncorhynchus mykiss* Walbaum, 1792) diet

Abedi S.Z.¹; Yeganeh S.¹*; Moradian F.²; Ouraji H.¹

Received: August 2017
Accepted: September 2017

Abstract

This research investigated the feasibility of using three strains *Lactobacillus* sp. viz. AM11, AM13, and AM14 previously isolated from dairy products to be used as probiotics in fish diet for phytase production. The bacteria grown in oxygenated media, bile salt, acid and supernatant of digestive tract were examined for their antibiotic resistance and non-pathogenicity for using in fish feed. Results indicated that the isolates might be attractive candidates as probiotic strains in rainbow trout. All strains were capable of growth and produced phytase in a pH range from 3.0 to 8.0. The isolated strains were also resistant in bile salts and supernatant of digestive tract. No mortality has been observed in the fish injected by bacterial strains. No bacterial growth has observed in the liver, kidney and spleen media after 24 h. Therefore, the examined *Lactobacillus* strains were non-pathogenic. Due to the low resistance of these strains to tetracycline (antibiotic), it is suggested to avoid using tetracycline in rainbow trout farms when the bacterial strains are used as probiotic. According to the results, the three isolated resistant strains can be employed as probiotics in fish feed.

Keywords: Probiotic, *Lactobacillus* sp., Phytase, Fish feed

¹-Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
²-Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
*Corresponding author’s Email: skyeganeh@gmail.com; s.yeganeh@sanru.ac.ir
Introduction

A probiotic is outlined as a live microbial adjunct that exerts a helpful impact on the host (Ibrahem, 2015). Probiotic products increase the appetite, improve digestibility (Cruz et al., 2012), stimulate immune system (Bricknell and Dalmo, 2005), improve growth (Didinen et al., 2016; Najmi et al., 2018), and can be beneficial for fish health either indirectly by regulating gut microbiota, or by direct signals mainly targeting the digestive and immune functions of the host (Gomez-Gil et al., 2000). Probiotics also stimulate the immune system (Bricknell and Dalmo, 2005) through production of antibiotics, bacteriocin, siderophore, lysozyme, protease, and hydrogen peroxide. Other known benefits of probiotics are changing pH and organic acid sequences (formic acid, acetic acid, lactic acid) (Verschuere et al., 2000), increased digestive enzymes, and improved growth (Didinen et al., 2016). Additionally, probiotic bacteria have been introduced into animal feed due to their contribution to the health of farmed animals and as biological control agents against diseases and stress conditions in aquaculture (Verschuere et al., 2000; Gatesoupe, 2008; Kesarcodi-Watson et al., 2008). A wide range of probiotic groups have been investigated for using in aquaculture, which can be categorized into living bacteria of both Gram-positive and Gram-negative, unicellular algae, bacteriophages and yeasts (Ibrahem, 2015).

Dairy products are sources of probiotic bacteria, including Lactobacilli (Gharaei Fathabad and Eslamifar, 2011). Milk and other dairy products are an acceptable and suitable medium for the growth of probiotic bacteria because of the availability of many essential nutrients (Narimani et al., 2015). These bacteria are the main components of starters that are used in the fermentation process, especially for dairy products (Pelinescu et al., 2009). Lactic acid bacteria (LAB) are also used as probiotics in aquaculture because of their properties such as low or no virulence, producing antimicrobial substances against harmful bacteria, adherence capacity and colonizing in the digestive tract, and competing with pathogens for adhesion sites (Mota et al., 2006).

Probiotic bacteria can be an enzyme sources (Khodaii et al., 2013; Kanpiengjai et al., 2013; Savita et al., 2017). Production of enzymes such as β-galactosidase, phytase and bile hydrolase vary among probiotic LAB (Saraniya and Jeevaratnam, 2015).

Phosphorus is one of the most important minerals for fish and acts as a major component of nucleic acid structure, cell membrane, and bone. Phosphorus in grains and plant proteins is the form of phytic acid or phytate that cannot be used in the digestive tract of monogastric animals due to the lack or inadequate amount of the enzymes degrading phytate (Liebert and Portz, 2005). Phytase is one of the several widely used enzymes in feed industry and the dietary supplementation of phytase can enhance the bioavailability of minerals and proteins for animals (Singh and Satyanarayana, 2007).
Digestibility and accessibility of phosphorus from dietary plant protein sources are important for fish nutrition. Research on probiotics in aquaculture, particularly in rainbow trout farming, has focused on LAB, most notably *Lactobacillus* spp., *Carnobacterium* spp., *Enterococcus faecium* and *Pediococcus* spp. for improving fish immune system (Nikoskelainen et al., 2001; Balcazar et al., 2006; Balcazar et al., 2007; Gatesoupe, 2008; Merrifield et al., 2010; Grześkowiak et al., 2011; Soltani et al., 2019). Rainbow trout (*Oncorhynchus mykiss*) as a cold fresh water fish is a highly commercial sport and market fish.

Probiotic bacteria as fish feed supplement must have the ability to tolerate gastric acid, bile salts, endure the supernatant of digestive tract, resist antibiotics and to be non-pathogenic for fish (Schillinger et al., 2005). Accordingly, the present study has sought to find some bacteria with phytase activity from dairy products that can be used as probiotics to enhance the availability of phosphorus in fish feed. Initial screening was performed with respect to phytase activity from dairy products that can be used as probiotics to enhance the availability of phosphorus in fish feed. Initial screening was performed with respect to phytase activity and bacterial growth at different pH and temperature levels. Then, three isolates were selected based on farming conditions of rainbow trout (*O. mykiss*) followed by characterization of probiotic properties of *Lactobacillus* sp. strains AM11, AM13 and AM14.

Materials and methods

Isolation and culture of Lactobacillus sp.

Thirty one *Lactobacillus* species have been isolated from sheep and cow’s milk and yogurt samples using serial dilutions and cultured in specific media for Lactobacilli followed by testing for gram positivity and catalase activity. Each isolate was streaked on Man Rogosa and Sharp (MRS) agar media and incubated in an anaerobic system in the presence of a gas-generating kit (Oxoid) at 15 °C for 48 h. All isolates were stored at -20 °C in MRS broth supplemented with 20% (v/v) glycerol (Hartemink et al., 1997).

Phytase assay

Phytase activity was assayed by measuring the amount of liberated phosphate from sodium phytate. Phytase activity was determined by the modified method of Raghavendra and Halami (2009). A reaction mixture containing 400 μl of extracellular enzyme and 200 μl of 100 mM sodium acetate buffer and 200 μl sodium acetate buffer containing 2 mM sodium phytate as substrate was incubated at 15°C for 15 min (Selected strain with maximum phytase activity will be used as probiotic for cold-fresh water fishes such as rainbow trout, this is the reason why temperatures in 15 °C was studied). The reaction was stopped by adding 800 μl of 10% (w/v) trichloroacetic acid solution (Songré-Ouattara et al., 2008). The released inorganic phosphate was measured by adding 800 μl of color reagent, prepared daily by mixing 4 volumes of solution...
A and 1 volume of solution B. The fresh Solution A was prepared daily by dissolving 2 g ammonium molybdate in 80 ml distilled water slowly add 5.5 ml sulfuric acid (98%) and diluted to 20ml with water. Solution B contains 2% ferrous sulfate (2 g in 100 ml distilled water). The mixture was transferred to an eppendorf tube and centrifuged at 10,000 rpm for 5 min at 4°C. After 15 min, the tubes containing the reactions were measurement of absorbance in the 660 nm range, and finally carried out using a spectrophotometer (BEL PHOTONICS- UV-M51 UV/VIS spectrophotometer- Italy) (Raghavendra and Halami, 2009). One unit of phytase activity was defined as the amount of enzyme that produces 1 µmol of inorganic phosphorous per 15 min. The results were compared to a standard curve prepared with inorganic phosphate (K2HPO4).

The isolates showing higher levels of phytase activity and growth were selected from the cultured bacteria. One unit of phytase activity was defined as the amount of enzyme producing 1 µmol of inorganic phosphorous per 15 min. The unit of enzyme was estimated in one ml of bacteria culture.

Oxygen tolerance of bacteria

In order to investigate the bacterial resistance to ambient oxygen, the isolates were cultured in aerobic condition as described previously (Kandler and Weiss, 1984).

Bacterial resistance to acidity

The isolates were cultured in MRS medium in a range of pH values. The pH levels of buffers were adjusted from 3 to 8 by using 1 M NaOH and HCl (Seme et al., 2015).

Isolation of supernatant from fish gastrointestinal tract

In order to prepare supernatant from different gastrointestinal sections, rainbow trout samples were have been on starving for 48 h prior to the sampling to allow full discharge of their digestive system (Elkhalil et al., 2007). The fish were then anaesthetized with clove powder (300 mg L⁻¹) and immediately placed in the vicinity of the ice to die off (Merrifield et al., 2010). The stomach, pyloric caeca and intestines were carefully separated and the contents well drained off, washed up with distilled water (Chang and Liu, 2002) to remove the remaining feed in the stomach and intestines. Subsequently, they were immediately stored at -20 °C. For supernatant preparation, samples thawed at ambient conditions, weighed, mixed with 1 to 5 mM sodium chloride (W/V), and then homogenized in the presence of ice. The supernatant was obtained by centrifuging at 5000 rpm for 30 min at 4 °C (model Hettich, Germany). Afterward, the bacterial suspension was mixed with 0.3% of supernatant and placed on a solid MRS medium in three replicates at 37 °C for 48 h (Chang and Liu, 2002). The absorbance of growth measured at 600nm by spectrophotometer (BEL PHOTONICS-UV-M51 UV/VIS spectrophotometer - Italy).
Bacterial resistance to bile
The resistance of *Lactobacilli* isolates against bile was measured by Arihara's method (Arihara et al., 1998). First, the LAB were cultured at 37 °C for 24 h. Fish's bile was collected by aseptically puncturing the gall bladders of rainbow trout, then bacterial suspension was mixed with 0.3% of bile and cultured in three replicates on a solid MRS medium at 37 °C for 48 h. The bacterial colonies were observed after incubation.

Bacterial resistance to the antibiotic
Antibiotic susceptibility of bacteria was investigated using disk diffusion method in which tetracycline has chosen as one of the commonly used antibiotics. The antibiotic disc (bioDisc) was purchased from Padtan Teb Company (Iran). Tetracycline with a concentration of 30 μg was placed on plates containing lactobacilli and cultured on MRS agar. Plates were incubated at 37 °C for 24 h. Inhibition zones (mm) around the disc were measured after the incubation (Chang et al., 2011).

Non-pathogenicity test for fish
The potential harmful effects of isolated bacteria were measured according to Brunt and Austin (2005). For this purposes, the bacteria have cultured, washed up and the bacterial suspension (100 μl) containing 3×10⁸ CFU ml⁻¹ was injected intraperitoneally to rainbow trout (each treatment with two replicates; three fish per replicate) and the fish were cultured in fiberglass basins (20 L). Control group received only physiological serum.

Bacteriological examinations have performed after one month. In completely sterile conditions, samples from the liver, kidney and spleen were removed and transferred to a solid MRS medium and incubated at 37 °C for 24 h (Klesius et al., 2006).

Statistical analysis
This experiment was conducted with a completely randomized design. Data were first normalized using Kolmogorov-Smirnov method, then phytase activity and growth rate of three bacterial strains in different pH levels were compared by two-way analysis of variance (ANOVA). The resistance of three isolates to tetracycline was compared by one-way ANOVA. Duncan’s test was applied to compare the mean values of treatments. All the statistical analyses were carried out with SPSS 17.

Results

Selection of bacteria (based on phytase activity and growth)
Of 31 LAB isolated from sheep and cow’s milk, three isolates, viz. *Lactobacillus* sp. strains of AM11, AM13 and AM14 have been selected that showed higher levels of phytase activity and growth rates. The phytase activities of the three strains were 0.901±0.10, 0.912±0.14 and 0.771±0.05 U ml⁻¹, with growth rates of 0.415±0.012, 0.404±0.037 and 0.9±0.10, respectively.

Oxygen tolerance of bacterial strains
All selected bacteria survived more than 72 h of exposure to atmospheric
oxygen (Table 1). The results showed that the studied lactobacilli grew both in aerobic and anaerobic conditions indicating that the examined strains were facultative anaerobes.

Table 1: Oxygen tolerance of lactobacilli strains.

<table>
<thead>
<tr>
<th>Lactobacillus strain</th>
<th>Oxygen tolerance (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM11</td>
<td>> 72</td>
</tr>
<tr>
<td>AM13</td>
<td>> 72</td>
</tr>
<tr>
<td>AM14</td>
<td>> 72</td>
</tr>
</tbody>
</table>

Bacterial resistance to acidity

The strains AM11, AM13, and AM14 showed tolerance to pH ranges of 3.0-8.0 during 24 h of incubation. No significant differences were found between strains at pH of 5.0 ($p>0.05$). The strain AM14 had the highest biomass among the three isolated strains in pH values of 6.0-8.0 ($p<0.05$). The pH levels of 3.0 and 4.0 resulted in the highest biomass of the strains AM11 and AM13 ($p<0.05$; Table 2). Two-way ANOVA revealed significant interactions between the pH and the bacterial strains ($p=0.00$) with significant biomass differences among groups exposed to different pH and strains ($p=0.00$ and 0.00, respectively).

Table 2: Lactobacilli strains' growth at different pH levels after 24 h.

<table>
<thead>
<tr>
<th>pH</th>
<th>Lactobacillus sp. strain</th>
<th></th>
<th></th>
<th></th>
<th>pH ×strains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM11</td>
<td>AM13</td>
<td>AM14</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.439±0.01Ab</td>
<td>0.382±0.01Bb</td>
<td>0.378±0.03Bc</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.101±0.005Ce</td>
<td>0.152±0.01Ac</td>
<td>0.132±0.001Bc</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.193±0.001Ad</td>
<td>0.218±0.02Ad</td>
<td>0.196±0.01Ac</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>0.281±0.001Bc</td>
<td>0.302±0.001Bc</td>
<td>0.705±0.07Bc</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>0.415±0.012Bb</td>
<td>0.404±0.037Bab</td>
<td>0.900±0.10Bb</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.470±0.06Ba</td>
<td>0.447±0.04Ba</td>
<td>0.75±0.06Ba</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Values are mean±SD. Different lowercase and uppercase letters show significant differences in each column and row, respectively ($p<0.05$).

The results of pH effects on phytase activity of lactobacilli strains are shown in Table 3. The activities of strains AM11, AM13, and AM14 varied from 0.340 to 0.923, 0.317 to 0.960, and 0.320 to 0.790 U ml$^{-1}$, respectively.

The lowest phytase activities of the strains AM11, AM13, and AM14 have been observed in pH values of 3.0-5.0, 3.0-6.0, and 4.0, respectively ($p<0.05$). The phytase activities of all strains were uppermost in neutral and weak alkaline pH (7.0 and 8.0). Except for a pH of 8.0, the phytase activity was not significantly different among all bacterial strains ($p>0.05$). Two-way ANOVA revealed no significant interactions between the pH and bacterial strains ($p=0.11$). The phytase activity was significantly different among groups exposed to different pH and strains ($p=0.00$ and 0.006, respectively).
Table 3: Lactobacilli strains’ phytase activity (U ml⁻¹) at different pH values after 24 h.

<table>
<thead>
<tr>
<th>pH</th>
<th>AM11</th>
<th>AM13</th>
<th>AM14</th>
<th>Strain</th>
<th>pH × strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>0.450±0.03<sup>Abc</sup></td>
<td>0.406±0.07<sup>Ab</sup></td>
<td>0.406±0.04<sup>Abc</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.340±0.02<sup>Ac</sup></td>
<td>0.317±0.02<sup>Ab</sup></td>
<td>0.320±0.05<sup>Ad</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.400±0.04<sup>Abc</sup></td>
<td>0.387±0.06<sup>Ab</sup></td>
<td>0.381±0.01<sup>Bc</sup></td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6.0</td>
<td>0.446±0.05<sup>Ab</sup></td>
<td>0.463±0.04<sup>Ab</sup></td>
<td>0.452±0.03<sup>Ab</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>0.901±0.10<sup>Aa</sup></td>
<td>0.912±0.14<sup>Aa</sup></td>
<td>0.771±0.05<sup>Aa</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.923±0.05<sup>Aa</sup></td>
<td>0.960±0.05<sup>Aa</sup></td>
<td>0.790±0.05<sup>Ba</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean±SD. Different lowercase and uppercase letters show significant differences in each column and raw, respectively (p<0.05).

Bacterial resistance to supernatant of digestive tract

Based on the results, the isolates could survive well in digestive tract supernatant condition after 48 hours of incubation (Fig. 1). The control indicates bacterial growth in a medium without digestive supernatant.

![Figure 1: The growth rate of *Lactobacillus* sp. strains AM11(A), AM13 (B), and AM14 (C) in the medium containing digestive supernatant; The control indicates bacterial growth in a medium without digestive supernatant.](image)

Bacterial resistance to bile

In this study, the bile exerted had not any effects on the growth of *Lactobacillus* sp. strains AM11, AM13, and AM14 indicating that these strains are able to tolerate bile in the fish intestines (Fig. 2).
Abedi et al., Probiotic potential of *Lactobacillus* sp. strains capable of…

Figure 2: The growth rate of *Lactobacillus* sp. strains AM11 (A), AM13 (B), and AM14 (C) in the presence of bile. the control indicates bacterial growth in a bile free medium.

Antibiotic resistance

The result of tetracycline tolerance of the LAB strains are shown in Table 4.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>AM11</th>
<th>AM13</th>
<th>AM14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline 30 μg</td>
<td>27±0.9<sup>a</sup></td>
<td>25 0.5<sup>b</sup></td>
<td>20±0.57<sup>c</sup></td>
</tr>
</tbody>
</table>

Values are means±SD. Different superscript letters show significant differences ($p<0.05$).

Accordingly, AM14 is more resistant to tetracycline compared to both AM11 and AM13 strains ($p<0.05$).

Non-pathogenicity to fish

During one month, no mortality has been observed in the fish injected by bacterial strains and showed a good health status as the control group. Even symptoms of disease were not observed in the treatments. After one month of bacteriological examinations, samples from the liver, kidney and spleen did not show any bacterial growth after 24 h. Therefore, these *Lactobacillus* strains were not pathogenic to our fish samples (Fig. 3).

Figure 3: The bacterial culture after injection (3×10^8 CFU ml⁻¹) to fish. The control indicates bacteria culture not injected to fish. A) Liver; B) Spleen; C) Kidney.
Discussion
The present study was conducted to find probiotic bacteria capable of phytate breakdown from dairy products to be used in cold – fresh water fish systems, in particular rainbow trout (O. mykiss). In recent years, researchers have sought to introduce better probiotics in order to enhance the efficiency of aquaculture production. It has been shown that lactobacilli are good probiotics and that LAB from dairy products can be a suitable probiotic source for fish nutrition (Narimani et al., 2015).

Supplemental phytase effectively releases phosphate groups of phytate in rainbow trout (Cain and Garling, 1995). There are still limited sources of phytase applicable in all food and animal feed. Therefore, a phytase producing probiotic can be a good alternative to supplement phytase. Phytate-bound P is not available to monogastric animals including fishes (National Research Council, 2011). Furthermore, phytate may interfere with the availability of other minerals and can bind trypsin, thereby, decrease protein availability in fish (Singh and Krikorian, 1982).

According to our results, the three lactobacilli strains with high growth rates and marked potential of phytase activity were isolated from dairy products (milk and yogurt) and studied for their probiotic characterization. Several studies evaluated the probiotic effects of LAB on crayfish (Astacus leptodactylus) (Didinen et al., 2016) and Artemia nauplii (Lamari et al., 2013). Also, several LAB strains viz. L. acidophilus BS (Commercial fermented milk; 0.02 U ml\(^{-1}\)), L. fermentum DSM 20052 (Fermented beets; 0.19 U ml\(^{-1}\)), L. plantarum JBPRS (Plant origin; 0.36 U ml\(^{-1}\)), and L. casei DSM 20011 (cheese; 0.53 U ml\(^{-1}\)) (Haros et al., 2013) isolated from different ecosystems have been studied in terms of their phytase activities.

L. reuteri has been reported to show the highest phytate degrading activity (0.90 U ml\(^{-1}\)) (Hayek et al., 2014), similar to that of phytase detected in our isolated bacterial strains.

One of the primary conditions for probiotic microorganisms is oxygen-tolerance (Rolf et al., 1977). LABs are recognized as oxygen-tolerant anaerobes (Ianniello et al., 2016; Karami et al., 2017). Anaerobic bacteria differ in their ability to survive in the presence of oxygen (Loeschew, 1969; Tally et al., 1977). In this study, all strains could tolerate oxygen for more than 72 h. Rolf et al. (1977) studied the effect of atmospheric oxygen on the viability of 13 strains and reported that *L. plantarum* could tolerate oxygen for over 72 h.

Another probiotic characterization is resistance to acidity. In some studies, acidity resistance was assessed by investigating the ability of strains to survive in a simulated gastric juice (SGJ) (Gibson et al., 2005). Lactobacilli used as probiotic adjuncts are commonly delivered in a food and/or feed systems. To establish in the intestine, the bacteria should pass through the stomach so they must be resistant to the acidic conditions. In most fishes, the digestive system is
acidic, hence, tolerance of acidic conditions is one of the characteristics of probiotic microorganisms (Zago et al., 2011). The stomach and intestines pH level in rainbow trout were estimated to be 2.5 - 3.5 and 7.0-8.0, respectively (Lavelle and Harris, 1997). Considering that the pH of fish intestines is 7.0-8.0, and that the bacteria colonize in the intestines, improving the intestinal microbial balance can help inhibit the colonization of fish pathogens in the digestive tract (Conway et al., 1987; Wong and Rawls, 2012), phytase activity, and bacterial biomass in such pH ranges. Our strains grew up at different pH levels, showing phytase activities in a range of 3.0 to 8.0 after 24 h. Similar results were reported by Turchi et al. (2013), where LAB strains showed to be tolerant of acidic pH (pH=3).

Kanpiengjai et al. (2013) demonstrated optimum pH values ranging from 6.0 to 9.0 for the production of phytase from a new source of phytase producing bacterial strain, Anoxybacillus sp. MHW14. Belduz et al. (2003) first reported a novel species, A. gonensis, which had a broad range of optimum pH (5.5 - 9.5) while A. flavithermus grew well at pH levels of 5.5 - 9.0. A. kamchatkensis also displayed a broad optimum pH of 6.8 - 9.5 (Kevbrin et al., 2005). The effect of pH on the biosynthesis of phytase was probably corresponded to the optimum pH for the bacterial growth. A thermophilic bacterial strain, A. gonensis MHW14, produced phytase (0.20 U ml⁻¹) at a pH of 7.0 (Kanpiengjai et al., 2013). In the present experiment, the amounts of phytase produced by Lactobacillus sp. AM11 (0.340-0.923 U ml⁻¹), AM13 (0.317-0.960 U ml⁻¹) and AM14 (0.320-0.790 U ml⁻¹) were obtained at pH values of 3.0 to 8.0 while phytase activities extracted from Aspergillus niger and Saccharomyces cerevisae were recorded at pH ranging between 4.5 and 5.0 (Naves et al., 2012). Overall, maximum phytase activity and bacterial biomass were demonstrated in pH values of 7.0 - 8.0.

The isolates of Lactobacillus sp. strains (AM11, AM13, and AM14) survived well under the action of gastrointestinal tract supernatant. Conway et al. (1987) showed the ability to survive in gastric juice varied significantly for the strains tested; L. acidophilus ADH survived better than both L. bulgaricus, and Streptococcus thermophiles. Leuconostoc lactis was evaluated in vitro for the tolerance of the simulated gastric and intestinal juices. The isolated strain was able to survive well in the trypsinase and pepsin solutions (Zhang et al., 2013).

Moreover, the survivability of LABs under stimulated gastric juice have already been documented supporting the present study (Faye et al., 2012; Turchi et al., 2013; Garcia-Ruiz et al., 2014). Our findings clarify that the LAB isolates could resist in the stimulated gastric conditions.

Probiotic bacteria subsequently enter the upper intestinal tract exposed to bile that secreted by pancreas. Previous studies reported that bile tolerance could also be considered an important
factor affecting LAB’s viability (Pacheco et al., 2010). The concentrations of bile salts in the gastrointestinal tract averaged between ≈0.3 to 1.5 percent. In the present study, all isolates were resistant to bile concentrations. Chateau et al. (1994) showed the effects of bile salts on the growth of 38 LAB isolates, a half of which were slowly influenced by 0.3% bile salts with reported growth retardation for less than one hour in MRS medium compared to control. Rainbow trout bile tolerance accounts for an essential parameter for the survival of probiotic bacteria in the gut (Merrifield et al., 2010). The bile concentrations in this study, showed no inhibitory effects on bacterial growth and all the three strains were able to survive when exposed to 0.3% of rainbow trout’s bile. The results suggest that these isolates have the potential to survive in fish digestive tract, hence, likely survivable while passing through the gasterointestinal tract, as observed in previous studies as well (Strahinic et al., 2013; Trivedi et al., 2013).

With the widespread application of antibiotics in some fish farms, knowledge of probiotic resistance against antibiotic treatment seems to be critical. Some LABs are reportedly antibiotic-resistant. It is noteworthy that when using a probiotic bacteria, its antibiotic resistance should be measured at the time of use. Tetracycline is a broad spectrum antibiotic exhibiting inhibitory activity against a wide range of gram-positive and gram-negative bacteria (Chang et al., 2011). Kattla et al. (2001) and Choi et al. (2003) also confirmed a generally lower resistance of LAB species towards tetracycline and chloramphenicol. Zago et al. (2011) represented that among 25 L. plantarum strains isolated from Italian and Argentinean cheeses tested for susceptibility to four antibiotics belonging to the clinically most relevant antibiotic classes, only two were highly resistant to tetracycline and carried the tetM gene. Vizoso-Pinto et al. (2006), however, did not detect any antibiotic resistant strains within L. plantarum isolated from traditional African fermented products. Conversely, a high frequency of tetracycline-resistant strains was observed in L. plantarum from Italian fermented dry sausages (Zonenschain et al., 2009). In our study, Lactobacillus sp. strains of AM11, AM13 and AM14 were sensitive to tetracycline as a commonly used antibiotic, in aquaculture. Since the resistance of these strains to tetracycline is low, it is suggested that tetracycline is not used in fish farms when these strains are used as probiotic.

One of the most important features of a probiotic is, it must not be pathogenic or toxic to its host (Kesarcdi-Watson et al., 2008). The isolated bacteria in this study caused no harmful effects on rainbow trout and resulted in no infectious in the experimental fish. Furthermore, no visible disease symptoms or mortalities were observed following injection of every three isolated bacteria tested as probiotics. Burbank et al. (2012) identified two Enterobacter sp. strains (C6-6 and C6-
to be non-pathogenic to rainbow trout, inhibiting *Flavobacterium psychrophilum* in vitro. Didinen *et al.* (2016) also showed that *Hafnia alvei* did not cause any harmful effects on the crayfish Stage II juveniles upon challenge even at a dose of 10^7 cells mL$^{-1}$. Overall, *Lactobacillus* sp. is generally recognized as safe (GRAS) by the FDA (Food and Drug Administration, USA), therefore, rendering this genus a good probiotic (Zhang *et al.*, 2013). Further studies are in progress in the authors’ laboratories to evaluate the impacts of *Lactobacillus* sp. strain AM14 on growth performance, nutrient digestibility, and body composition of *O. mykiss*.

According to the results of the present study, isolated *Lactobacillus* strains from dairy products have probiotic properties that make them potential candidates for probiotic applications in cold-fresh water fish farms. Also, as these strains have phytase activity in a broad pH medium, it is possible to increase plant ingredients as protein resources replaced with dietary fish meal by using these strains, which reduces the cost of diet preparation and can help the future of the aquaculture industry by reducing fish meal consumption.

Acknowledgements

The authors gratefully acknowledge for the facility and assistance offered by the departments of Fisheries and Basic Sciences, Sari Agricultural Sciences and Natural Resources University, I.R. of Iran.

References

Burbank, D.R., LaPatra, S.E., Fornshel, G. and Cain, K.D., 2012. Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout Oncorhynchus mykiss (Walbaum) and screening for inhibitory activity against Flavobacterium psychrophilum. *Journal of Fish Diseases*, 35, 809-16.

Najmi, N., Yahyavi, M. and Haghshenas, A., 2018. Effect of

Wong, S. and Rawls, J., 2012.
Intestinal microbiota composition in fishes is influenced by host ecology and environment. *Molecular Ecology*, 21, 3100–3102.

Characterization and probiotic potential of *Lactobacillus plantarum* strains isolated from cheeses. *Food Microbiology*, 28, 1033-1040.

Zhang, W., Liu, M. and Dai, X., 2013.
Biological characteristics and probiotic effect of *Leuconostoc lactis* strain isolated from the intestine of black porgy fish. *Brazilian Journal of Microbiology*, 44, 685-691.

Zonenschain, D., Rebecchi, A. and Morelli, L., 2009.