Growth performance, hepatic function parameters, histological changes of rainbow trout *Oncorhynchus mykiss* (Walbaum, 1792) and oxidative stability index of feed following dietary administration of Mix-Oil

Bababaalian Amiri A.1; Azari Takami G.1*; Afsharnasab M.1; Zargar A.2

Received: July 2018 Accepted: December 2018

Abstract
The main objective of this study was to evaluate the effects of dietary supplementation of Mix-Oil (including: *Thymus vulgaris* (%0.5), *Origanum vulgare* (2%) and *Eucalyptus* spp. (2.5%) essential oils) on growth performance, hepatic function parameters, tissue changes of rainbow trout and oxidative stability index of trout feed. Four groups of trout fish (with average weight 31.0±0.1 g) were fed with four diets containing: 0, 50, 200 and 400 ppm of Mix-Oil for 8 weeks. SGR, ADG, CF, TGC, DGC, RGR and BWI were significantly higher and also FCR significantly lower were observed in 200 and 400 ppm groups compared to 50 ppm and control groups (p<0.05). Significant increase in PER, LER, FCE and RFI in fish fed with 200 and 400 ppm Mix-Oil were observed compared with control and 50 ppm groups (p<0.05), while, no significant differences having been observed among different treatments in terms of AST and ALT level (p>0.05). An increase in the number of hematopoietic cells in the kidney and significant increase in the length of the intestinal villous and the number of related epithelium cells having been seen in the 400 ppm treatment group compared to the other studied treatment groups (p<0.05). By increasing the concentration of Mix-Oil, trout feed resistance has increased against oxidation. Although, the observed increments were only statistically significant in the 200 and 400 ppm Mix-Oil (p<0.05) compared to 50 ppm and control groups. The results suggested that dietary administration of Mix-Oil at the level of 400 ppm could improve growth performance of rainbow trout as well as increase the feed stability.

Keywords: Mix-Oil, Growth performance, *Oncorhynchus mykiss*, Tissue changes, Oxidative stability index of feed

1-Department of Aquatic Animal Health and Diseases, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

2-Department of Aquatic Animal Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

*Corresponding author's Email: Takami85@hotmail.com
Introduction

Fish products as a valuable source of protein represent world’s best source of high-quality protein with important micronutrients for good health. Since 1990, fish capture has fixed at about 90 million tons in the world, and after that aquaculture has been replaced as the main source for increased growing fish supply (FAO, 2016). On the other hand, the infectious diseases has emerged as a main obstacle to aquaculture industries worldwide, inducing hundreds of millions of dollars economic losses annually (Dadar et al., 2016; Soleimany et al., 2016). So, antibiotics have been used widely in modern aquaculture to prevent or treat the bacterial diseases in farmed fish. Therefore, antibiotics consumption has been raised the concerns about cross-resistance as well as the multiple resistances (Adel et al., 2017). For these reasons, the development of bacterial resistance has emerged the critical demand to evaluate new antibacterial agents. Therefore, in various diseases, immune stimulant effects of different medicinal plant extracts have been evaluated on fish, for preventing or treating of disease or growth promoter abilities (Adel et al., 2015; Hoseinifar et al., 2017). Some herbal medicines, including Thymus vulgaris, Origanum vulgare and Eucalyptus sp. that are commonly identified as safe substances (GRAS) (http://www.cfsan.fda.gov/_dms/eafus.html) are known for inducers of growth performance, immune system, blood factors and intestinal selected bacterial population (Ertas et al., 2005; Zheng et al., 2015). High antioxidant and antimicrobial effects revealed by T. vulgaris extracts because of high rich source of thymol (Marino et al., 1999; Dorman and Deans 2000; Akbarinia and Mirza 2008; Rota et al., 2008). Also, several studies have been reported O. vulgare with radical-scavenging, antimicrobial, antioxidant and cytotoxic activities properties due to high phenolic content (Carvacrol and thymol), and two monoterpene hydrocarbons of γ-terpinene, and p-cymene (Şahin et al., 2004; Chun et al., 2005; Faleiro et al., 2005). Moreover, Eucalyptus sp. leaves explored as natural antibiotic for the treatment of numerous infectious diseases (Ghalem and Mohamed, 2008; Elaissi et al., 2011; Mulyaningsih et al., 2011; Bachir and Benali 2012). The main antibacterial components of Eucalyptus species were 1,8-cineole followed by α-pinene, p-cymene, borneol, cryptone, spathulenol, viridiflorol and limonene (Elaissi et al., 2011). Recently, some studies analyzed these herbal medicines to analysis potent alternatives to antibiotics as therapeutic and prophylactic agents in aquaculture systems (De Rosa et al., 1994; Foysal et al., 2011; Salehi et al., 2016), but there are no reports that evaluate co-administration of T. vulgaris, O. vulgare and Eucalyptus sp. extracts on growth indices, liver enzymes and tissue changes of rainbow trout (O. mykiss). For example, it has been reported that dietary thyme had a various effect since used as an oil or herb on body mass and weight gain in chickens from 7 to 28 days of age.
(Cross et al., 2007). However, there is only rare data about whether the herb extracts would have the growth promoting effects in fish.

Therefore, the main objectives of this study were to study the effects of dietary supplementation of Mix Oil (including: Thymus vulgaris, O. vulgare and Eucalyptus spp essential oils) on growth performance, hepatic function parameters, tissue changes of rainbow trout and oxidative stability index of trout feed.

Materials and methods
Animal and experimental conditions
A total of 840 rainbow trout juveniles with an average weight 31.0±0.1 g (mean±SE) were obtained from a commercial fish farm in Mazandaran province, Iran and transferred to the Chalus farm in November 2017 (Sari, Iran). The fish having been acclimatized to laboratory rearing conditions for 2 weeks and have been provided with a commercial diet 3 times per day at 3 % body weight (Table 1). After the acclimation period, apparently healthy fish have been selected and were randomly divided into 12 3000-L cement ponds with a stocking density of 70 fish per tank. The physicochemical properties of water during acclimation and actual experiment were maintained as follows: dissolved oxygen at 9.26±0.1 mg L⁻¹, pH at 7.34±0.7, temperature at 16.0±1.2°C (mean±SE). The fish were subjected to a 16L: 8D photoperiod regime.

<table>
<thead>
<tr>
<th>Proximate composition (% dry weight)</th>
<th>Crude protein</th>
<th>Crude lipid</th>
<th>Ash</th>
<th>Fiber</th>
<th>Moisture</th>
<th>NFE a</th>
<th>Energy (MJ kg⁻¹) b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td>12</td>
<td>8.2</td>
<td>2.3</td>
<td>4.76</td>
<td>15.3</td>
<td>20.6</td>
</tr>
</tbody>
</table>

aNitrogen-free extracts (NFE)=100-(crude protein+crude lipid +ash)
bGross energy (MJ kg⁻¹) calculated according to 23.6 kJ g⁻¹ for protein, 39.5 kJ g⁻¹ for lipid and 17.0 kJ g⁻¹ for NFE

Diet preparation
Mix-Oil including: T. vulgaris (%0.5), O. vulgare (2%) and Eucalyptus spp (2.5%) essential oils in liquid form (Glycole used as carrier) were prepared from Animal Wellness Products Company (Italy). Components of the basal diet (Table 1) were mixed with the obtained Mix-Oil in an appropriate concentration, to get four different experimental diets as follows: With 0% (control group), 50 ppm, 200 ppm and 400 ppm of Mix-Oil. The diets allowed to dry and stored at 4 °C until use. During this study, fish were fed (3 % of body weight) three times per day for 8 weeks.

Gas chromatography mass pectrometry (GC/MS) analysis of Mix-Oil Analyses were performed using a Varian gas chromatograph (Varian Inc., Walnut Creek, California, model HP-6890) equipped with FID and MSD detectors, (Shimadzu, Japan, model 3600) with a DB5 fused silica column (methyl phenyl siloxane, 30 mm length, 0.25 mm i.d.); the carrier gas was helium; split ratio 1:15 and flame ionization detector. The initial temperature of the
column was 60 °C (for 2 min) rising to 240 °C at 5 °C min⁻¹, injector temperature 250 °C and detector temperature 260 °C. GC-MS analysis was performed on a cross-linked 5% methyl phenyl siloxane used silica capillary column (HP-5, 30m length, 0.25mm id, 0.25µm film thickness). The carrier gas was Helium with a constant flow rate 1 ml min⁻¹ and a constant pressure 135 Psi, the split ratio 1:15 and temperature program was from 60 ºC (3 min) to 220 ºC at 5 ºC min⁻¹, injector temperature of 260 ºC and detector temperature of 270 ºC. Chromatograms were recorded in TIC mode the m/z range was 50 to 500. The retention indices for all the components were calculated by using the retention times of n-alkenes (C8-C25 obtained from Sigma), which were injected after the essential oil under the same conditions (Saharkhiz et al., 2012). A total of 36 different components were identified in the Mix-Oil. For Mix-Oil Carvacrol was the predominant compound (45.4%) followed by Thymol acetate (10.7%) and Citraconic anhydride (2%).

Growth performance
At the end of the feeding trial (8 weeks), the fish were starved for 24 h before weighing and sampling. The following parameters were measured:

Weight gain=W₂(g)−W₁(g)

Specific growth rate (SGR)=100 \((LnW₂ - LnW₁)/T\)

Feed conversion ratio (FCR)=final weight (g)-initial weight (g)

Average Daily Growth (ADG%)=[W₂−W₁]/W₁×100

Thermal Growth Coefficient (TGC %) = \([BW_2^{0.333}−BW_1^{0.333} / \sum \text{OC (day- degrees)}] \) ×100

Daily Growth Coefficient (DGC %)=[W₂^{0.333}−W₁^{0.333} (t₂−t₁)]

Condition Factor (CF)=[W/L³]×100

Relative Gain Rate (RGR %)=[(W₂−W₁)/W₁]×100

Body weight increase (BWI%)=Final weight-Initial weight/Initial weight×100 or (W₂−W₁/W₁×100)

Protein Efficiency Ratio (PER)=(g live weight gain /g protein intake)

Lipid Efficiency Ratio (LER)=(g live weight gain/g lipid intake)

Relative food intake (RFI) = \([/(0.5×(W₂−W₁)×(t₂−t₁))×100\]

W₁ is the initial weight, W₂ is the final weight and T is the number of days= 56 in the feeding period, t₁ is the first day of the experiment, t₂ is Day 56 of the experiment, L is total length (Tacon, 1990).

In addition, the survival rate (SR, final number of fish/initial number of fish)×100 from each experimental group was evaluated.

Liver enzymes activity
The fish have been fasting 24 h prior to sampling. At first, fish anesthetized with clove oil (100 mg L⁻¹, Sigma Aldrich, Germany) before sample collection (Adel et al., 2015). 1 ml blood was drawn from the caudal vein and was transferred to non-heparinized tubes for serum collection (30 fish per group). Serum was collected after centrifugation at 3000 g for 15 min, divided into several aliquots and stored.
at -20 °C for next study (Saeidiasl et al., 2017). Aminotransferase (AST) and alanine aminotransferase (ALT) activities were calculated on fish sera by using commercial kits (Pars Azmoon Company, Tehran, Iran) and a biochemical auto analyzer (Eurolyser, Belgium) (Adel et al., 2015).

Histopathological study
At the end of the study, the liver, kidney, spleen and intestine of fish had been removed by dissection of abdominal cavity. The tissue samples were fixed in 10% buffered formaldehyde solution, followed by alcohol dehydration and embedding in paraffin (Sharifpour et al., 2014). Six-micrometer thick sections have been stained with haematoxylin-eosin for study of histomorphometrical properties of tissues of rainbow trout and were interpreted under light microscope.

Oxidative stability index (Rencimit test)
3 g of each experimental diets (0% (control group), 50 ppm, 200 ppm and 400 ppm (4 sample per group) of Mix-Oil), crushed, homogenized and weighed into a conical flask. Rencimit test has been measured by Metrohm Rancimat instrument (model 743, Herisau, Switzerland) by method that described by AOCS (1996). That method consists of the creation of substratum extreme stress conditions, with high temperatures (140 °C), and use of oxygen flow (15 L h⁻¹).

Statistical analysis
All the tests were performed triplicate. The data were subjected to statistical analysis using the SPSS software version no. 20 (SPSS Inc., Chicago, IL, USA). After satisfying the assumptions of normality and equal variance, the data have been analyzed by one-way analysis of variance (ANOVA) followed by Duncan’s multiple range tests. $p<0.05$ was considered statistically significant.

Results
Fish growth
The effects of Mix-Oil on the growth performance and nutritional parameters of rainbow trout are shown in Table 2 and 3, respectively. At the end of the feeding trial, SGR, ADG, CF, TGC, DGC, RGR and BWI were significantly higher ($p<0.05$) in 200 and 400 ppm Mix-Oil fed groups compared to 50 ppm and control groups. Significantly lower FCR was observed in 200 and 400 ppm Mix-Oil fed groups, with the lowest in 400 ppm group ($p<0.05$). The amounts of PER and LER and the percent’s of FCE and RFI was increased as a consequence of dietary administration of Mix-Oil to rainbow trout. Statistically significant increase were observed in PER, LER, FCE and RFI from those fish fed 200 and 400 ppm Mix-Oil enriched diet, respect to the values found on fish from control and 50 ppm groups ($p<0.05$). No significant differences have been observed in the the survival rate percentage between studied groups ($p>0.05$).
Table 2: Growth performance of rainbow trout fed with different levels of Mix-Oil.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>50 ppm</th>
<th>200 ppm</th>
<th>400 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (g)</td>
<td>31.0±0.7a</td>
<td>31.2±0.3a</td>
<td>30.8±0.5a</td>
<td>31.3±0.4a</td>
</tr>
<tr>
<td>Initial length (cm)</td>
<td>14.1±1.1a</td>
<td>13.9±0.1a</td>
<td>14.2±0.1a</td>
<td>15.0±0.1a</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>66.47±0.59a</td>
<td>74.93±0.76a</td>
<td>83.73±0.61b</td>
<td>102.05±0.92a</td>
</tr>
<tr>
<td>Final length (cm)</td>
<td>16.97±0.1a</td>
<td>17.30±0.1a</td>
<td>18.90±0.1a</td>
<td>19.16±0.1a</td>
</tr>
<tr>
<td>SGR (%)</td>
<td>1.27±0.02a</td>
<td>1.43±0.2c</td>
<td>1.74±0.01b</td>
<td>1.8±0.02a</td>
</tr>
<tr>
<td>ADG (%)</td>
<td>1.91±0.02a</td>
<td>2.26±0.02c</td>
<td>3.06±0.04b</td>
<td>3.23±0.05a</td>
</tr>
<tr>
<td>TGC (%)</td>
<td>3.7±0.46d</td>
<td>8.7±0.53c</td>
<td>17.85±0.36b</td>
<td>20.71±0.48a</td>
</tr>
<tr>
<td>DGC (%)</td>
<td>0.99±0.13d</td>
<td>2.32±0.14c</td>
<td>4.76±0.1b</td>
<td>5.52±0.13a</td>
</tr>
<tr>
<td>RGR (%)</td>
<td>2482.7±41.02d</td>
<td>3019.3±53c</td>
<td>3796.3±42.77b</td>
<td>4714.7±64.58a</td>
</tr>
<tr>
<td>BWI (%)</td>
<td>92±1a</td>
<td>92±1.5a</td>
<td>93±1.4a</td>
<td>95±1.2a</td>
</tr>
</tbody>
</table>

*Data are presented as mean±S.D (n=15 fish from each group). Means in the same rows with different superscript are significantly different (p<0.05).

Table 3: Nutritional parameters of rainbow trout fed with different levels of Mix-Oil.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>50 ppm</th>
<th>200 ppm</th>
<th>400 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCR (%)</td>
<td>2.0±0.02a</td>
<td>1.88±0.01b</td>
<td>1.67±0.01a</td>
<td>1.64±0.01a</td>
</tr>
<tr>
<td>FCE (%)</td>
<td>49.41±0.38d</td>
<td>53.3±0.4c</td>
<td>59.97±0.24a</td>
<td>61.11±0.29a</td>
</tr>
<tr>
<td>PER (%)</td>
<td>1.22±0.01a</td>
<td>1.32±0.01c</td>
<td>1.48±0.01b</td>
<td>1.51±0.01a</td>
</tr>
<tr>
<td>LER (%)</td>
<td>2.74±0.02a</td>
<td>2.96±0.02c</td>
<td>3.33±0.02b</td>
<td>3.39±0.02a</td>
</tr>
<tr>
<td>RFI (%)</td>
<td>6.75±0.05a</td>
<td>6.25±0.05b</td>
<td>5.56±0.05b</td>
<td>5.46±0.03a</td>
</tr>
</tbody>
</table>

*Data are presented as mean±S.D (n=15 fish from each group). Means in the same rows with different superscript are significantly different (p<0.05).

Hepatic function parameters

No significant differences have been observed in the levels of the enzymatic activities of liver (AST and ALT) estimated on fish sera from specimens fed Mix-Oil diets were very similar to the values found for control fish (fed non-supplemented diet) (Table 4). These results suggest that Mix-Oil was not toxic to hepatic health.

Table 4: Hepatic function parameters of rainbow trout fed diets supplemented with different levels of Mix-Oil for 8 weeks.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>50 ppm</th>
<th>200 ppm</th>
<th>400 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (U l⁻¹)</td>
<td>323.0±18.4a</td>
<td>340.2±20.1a</td>
<td>345.5±21.5a</td>
<td>336.2±32.3a</td>
</tr>
<tr>
<td>ALT (U l⁻¹)</td>
<td>15.0±0.82a</td>
<td>15.0±1.15a</td>
<td>16.0±0.82a</td>
<td>15.0±0.83a</td>
</tr>
</tbody>
</table>

*Data are presented as mean±S.D (n=30 fish from each group). Means in the same rows with different superscript are significantly different (p<0.05).

Histological results

There was no significant abnormal histological change in the studied tissues in the treatment groups and normal appearance revealed in all groups. In the microscopic examination of the liver and spleen tissue in the treatment groups, no histological changes have been observed.

Normal pattern of renal tubs has observed in kidney of experimental tissues. Microscopic examination of the kidney tissue in the 400-ppm treatment group (Fig. 1), showed an increase in the number of hematopoietic tissue constructors in the kidney and consequently an increase in their density was observed compared to the other studied treatment groups (Fig. 1).
Figure 1: Increase the number of hematopoietic tissue constructors (Arrows) in the kidney of studied treatments. Left picture (400 ppm of Mix-Oil), right picture (Control group).

All studies groups had a same morphology of intestine folds. Statistically significant increase the length of the intestinal villi and a number of epithelium cells in the intestine villi were seen in the 400 ppm treatment group (Fig. 2) compared to the other studied treatment groups (Fig. 2).

Figure 2: Increase the length of the intestinal villi (Arrows) in the intestine of studied treatments. Left picture (400 ppm of Mix-Oil), right picture (Control group).

Oxidative stability index
Based on the results by increasing the concentration Mix-Oil, trout feed resistance has increased against oxidation and subsequently the shelf life of the feed has increased (Table 5).

Although, the observed increments were only statistically significant in the 200 and 400 ppm Mix-Oil ($p<0.05$) while no significant difference have observed between control and 50 ppm Mix-Oil groups.
Table 5: Results of oxidative stability index of diets containing different levels of Mix-Oil.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>RANCIMAT<sup>125</sup> (h)</th>
<th>RANCIMAT<sup>140</sup> (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.12±0.01<sup>c</sup></td>
<td>0.03±0.01<sup>c</sup></td>
</tr>
<tr>
<td>50 ppm</td>
<td>0.12±0.02<sup>c</sup></td>
<td>0.03±0.01<sup>c</sup></td>
</tr>
<tr>
<td>200 ppm</td>
<td>0.8±0.04<sup>b</sup></td>
<td>0.2±0.04<sup>b</sup></td>
</tr>
<tr>
<td>400 ppm</td>
<td>3.2±0.1<sup>a</sup></td>
<td>0.8±0.08<sup>a</sup></td>
</tr>
</tbody>
</table>

^aData are presented as mean±S.D (n=4 sample from each group). Means in the same columns with different superscript are significantly different (p<0.05).

Discussion

The herbs and herbal products added to the feed cure many diseases, promote growth, reduce stress, improve immunity and prevent infectious diseases in fish under culture. The addition of herbs and herbal products in fish diet is cheaper and environmental friendly with low side effects to the fish and consumers (Shakya, 2017). The outcomes of this study highlights the growing and immune stimulants effects of some herbal extracts on the rainbow trout through stimulating the immune response and induce protection against disease. The effective roles of three different plant oils have been evaluated on oxidative stability index of trout feed, hepatic function parameters, as well as growth indices that showed significantly higher (p<0.05) Mix-Oil fed groups compared to control groups in rainbow trout. Similarly, *M. piperita* (Adel et al., 2015), sage and thyme oils (Sönmez et al. (2015) and marjoram (*Origanum* spp.) and ajwain (*Trachyspermum ammi*) extracts (Ali et al., 2017) are known to promote growth, feed conversion and/or improve protein digestibility in rainbow trout. Feeding *T. vulgaris*, *O. vulgare* and *Eucalyptus* sp. oil supplemented diets influenced antioxidant improves the liver enzyme activities, growth, FCR and survival rate in varied manners in rainbow trout. Also, AST and ALT has increased with liver damages and is applied to evaluate liver toxicity and its dysfunction (Sheth et al., 1998). Moreover, serum ALT and AST is generally increased even before the symptoms and clinical signs of the disease onset (Kim et al., 2008).

Several investigations have been performed to study the roles of herbal oils on growth performance of fish. However, these studies have been concentrated mainly on health issues. In our study, we evaluate the beneficial roles of the Mix-Oil, such as *M. piperita*, *R. officinalis* and *A. graveolens* oils on rainbow trout growth. At the end of the feeding trial, SGR, ADG, CF, TGC, DGC, RGR and BWI were significantly higher (p<0.05) in 200 and 400 ppm Mix-Oil fed groups. In agree with this study, revealed that in a seabass diet with dietary thyme (*T. vulgaris*) could explore the highest energy and protein retentions, as well as slightly improved growth performance at 1% (1000 mgkg⁻¹) thyme powder (Yılmaz, 2012). In another similar study, Sönmez et al. (2015), using dietary containing of sage and thyme oils, is effective to improve growth parameters (weight gain percentage and specific growth rate) of rainbow trout after 60 days feeding. On the contrary to our outcomes, it has been reported that oregano, anis and citrus peel essential oils (Hong et al., 2012), and peppermint (Emami et al., 2012) induce better results in higher
animals. In this study, SGR values of rainbow trout were positively affected by Mix-Oil treatments. Similar outcomes were reported by Hong et al. (2012) and Emami et al. (2012) but another study revealed different results from this study on supplementation of sage leaf powder that adversely affected feed conversion rate and growth in broiler (Demir et al., 2008).

In this study revealed that Mix-Oil had not toxic to hepatic health, although supplementing at least 100 mg of essential oils blend of T. vulgaris, M. piperita, R. officinalis and Anethum graveolens could significantly decreased AST and ALT enzyme activities (Mousavi et al., 2017). In accordance with our results, Fernandez et al. (1994) reported a remarkable association between dietary consumption of herbal extracts and decreased activities of plasma ALT and AST in broiler chickens with hepatic lesions as well as laying hens under aflatoxin stress. Also, serum ALT and AST activities were decreased in the thyme essential oil-added feed groups of Gibel carp (Carassius auratus gibelio) juveniles (Zadmajid and Mohammadi, 2017).

In current study, all studies groups had a same morphology of intestine folds. Statistically significant increase the length of the intestinal villus and the number of epithelium cells in the intestine villus were seen in the 400 ppm Mix-Oil compared to the other studied treatments. In Gurkan et al. (2015) survey, improvement in the intestine and liver histology of the Oreochromismoss amicus have been reported after feeding by three spice powders (T. vulgaris, R. officinalis or Trigonella foenum graecum). Also, improvement in proximal intestine and pyloric caeca and increase the epidermal thickness and mucous cell number of rainbow trout received of Alo evera 0.1% and 1% were observed (Heidarieh et al., 2013).

After dietary inclusion of herbal oil blend, the normal pattern of renal tubs as well as increase in the number of hematopoietic tissue constructors was observed in kidney. The results showed that the effective interaction between hepatic factors as well as dietary inclusion of herbal oil. On the contrary to our results Mousavi et al. (2017) revealed that administration of various sources of dietary fat (mix of T. vulgaris, M. piperita, R. officinalis and A. graveolens) had no significant effects on histology of liver. Also, Sönmez et al. (2015) showed no histological differences in kidney or liver of rainbow trout fed with 0.5 % and 1 % thyme and sage oil supplemented diets.

Our results also demonstrated that Mix-Oil could increase trout feed resistance against oxidation and subsequently the shelf life of the feed has increased. According with our results several studies also have been reported that herbal essential oils or medical plants have effective role in reducing the optical absorption of free radical because of the activity of hydrogen atom or electron donating and high antioxidant power (Jirovetz et al., 2003; Taheri Gandomani et al., 2014). Therefore, results of our study explore
that herbal oil products could have positive effective roles in developed aquaculture, to gain a good growth promotion, feed efficiency, fish health, and elevated stress resistance. Also, it is proposed that these oil plants maybe reveal synergistic effect at the studied dose. The results suggested that dietary administration of Mix-Oil at the level of 400 ppm could improve growth performance of rainbow trout as well as increase the feed stability. Thus, using of Mix-Oil as growth promotor is recommended for farmed rainbow trout. However, further studies on specific mechanisms for immune modulation and diseases resistant should be conducted for exploring the feasibility of application of Mix-Oil in rainbow trout culture.

Acknowledgements
The financial support of the Science and Research Branch, Islamic Azad University (Tehran, Iran). The authors wish to thank Mr kiani and Dr Maryam Dadar for their kind assistance.

References

AOCS, 1996. Official methods and recommended practices of the American Oil Chemists’ Society. 4nd ed. AOCS Press, Champaign. 140 P.

associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. *British Poultry Science*, 48(4), 496-506.

collected from diseased fish. *International Journal of Natural Sciences*, 1(4), 82-88.

Mulyaningsih, S., Sporer, F., Reichling, J. and Wink, M., 2011. Antibacterial activity of essential oils from *Eucalyptus* and of selected components against multidrug-resistant bacterial pathogens. *Pharmaceutical Biology*, 49(9), 893-899.

Rota, M.C., Herrera, A., Martínez, R.M., Sotomayor, J.A. and Jordán, M.J., 2008. Antimicrobial...

Saeidiasl, M.R., Adel, M., Caipang, C.M.A. and Dawood, M.A.O., 2017. Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica). Fish and Shellfish Immunology, 71, 230-238.

Sönmez, A.Y., Bilen, S., Alak, G., Hisar, O., Yank, T. and Biswas, G., 2015. Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils. Fish Physiology and Biochemistry, 41(1), 165-175.

different levels of clove bud (extit{Syzygium aromaticum}) on performance, intestinal microbial colonization, jejunal morphology and immune competence of laying hens fed different n-6 to n-3 ratios.

	extbf{Livestock Science,} 167, 236–248.

	extbf{Yilmaz, S., 2012.} Effects of herbal supplements on growth performance of sea bass (\textit{Dicentrarchus labrax}): Change in body composition and some blood parameters.

	extit{Energy,} 5, 21-66.

\textbf{Zadmajid, V. and Mohammadi, C., 2017.} Dietary thyme essential oil (\textit{Thymus vulgaris}) changes serum stress markers, enzyme activity, and hematological parameters in gibel carp (\textit{Carassius auratus gibelio}) exposed to silver nanoparticles.

\textit{Aquaculture,} 292(3), 214-218.