An investigation on the use of *Prosopis juliflora* pods as a carbohydrate source supplemented with probiotics in the diet of *Labeo rohita* fingerlings

Chovatiya S.¹; Bhatt S.²*; Shah A.²; Dube P.²

Received: January 2013 Accept: February 2016

Abstract

The present study investigated the use of fermented *Prosopis juliflora* pods (PJP) as a carbohydrate source alternative to rice bran (RB), and a *P. juliflora* pods based diet formulation supplemented with probiotics *Lactobacillus acidophilus* (LA), *Lactobacillus bulgaricus* 009 (LB) and *Streptococcus thermophilus* (ST) on the growth of *Labeorohita* (rohu) fingerlings. The diets were isonitrogenous (39%) and isoenergetic (15.9 KJg⁻¹ gross energy); and were prepared using rice bran (as reference diet RD), crude pods (PJPC), fermented pods (PJPF) and with probiotics *L. acidophilus* (PJPLA), *L. bulgaricus* (PJPLB) and *S. thermophilus* (PJPST). The results showed that fermentation of *P. juliflora* pods with *L. acidophilus* significantly increased (*p*<0.05) protein, lipid, Ca, Fe, Mg, K and reducing sugar; and completely eliminated phytic acid. The diets PJPF and PJPLA produced significantly higher (*p*<0.05) percent weight gain, SGR, FCR and PER as compared to PJPC, PJPLB and PJPST diets; and achieved growth performance comparable to RD. An improvement (*p*<0.05) in the carcass protein has been detected in groups PJPF and PJPLA in comparison to RD, PJPC, PJPLB and PJPST. The *L. acidophilus* was found to be effective in controlling coliform count in gut as compared to *L. bulgaricus* and *S. thermophilus*; and also in controlling total viable count, total coliform count and fecal streptococci count in fecal matter. The results indicate that PJPF and PJPLA deserve further investigations as alternative feed for rohu.

Keywords: *Prosopi juliflora* pods, Antinutritional factors, Probiotics, Fermentation, Growth, Microflora.

¹-Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology & Allied Sciences, New Vallabh Vidyanagar-388 121 Gujarat, India.
²-B R Doshi School of Biosciences, Sardar Patel University, Vallabh Vidyanagar–388 120 Gujarat, India.

Corresponding author’s E-mail: bhatt.sujata@gmail.com
Introduction

In India, Indian major carps are fed on supplementary feeds based on low input technology (Garg et al., 2002; Keshavanath et al., 2002). The use of locally available cheap and nutritionally acceptable non-conventional feed in the fish diet would certainly have a significant impact on carp culture by the reduction of feed cost. Carbohydrate in fish diet is an inexpensive immediate source of energy with protein sparing effects (Wilson, 1994; Erfanullah and Jafri, 1998). Grains and their by-products are the main carbohydrate sources used in the diet of cultivable fishes (Krogdahl et al., 2005). Replacement of yellow maize with a cheap carbohydrate source like barley as well as incorporation of a simple carbohydrate like pitted dates in the feed improved the growth of *O. niloticus* (Belal and Al-Jasser, 1997; Belal, 1999).

Prosopis juliflora, mesquite, is a leguminous tree (Family: Leguminosae, Sub-family: Mimosoideae). It is widely spread in arid zones of the world, mainly Africa, Pakistan, India, Brazil and Australia (Choge et al., 2007). It has been extensively used in animal feed, as a fuel and to control soil erosion (Ravikala et al., 1995). The PJ pods are reported to be rich in carbohydrate (30 to 75%) and contains fructose (3.2-12%), glucose (0.8-5%), galactose (0.8 %), sucrose (7.5-75%), maltose (<0.4%), lactose (0.7%), inositol(5%), raffinose(1%) and reducing sugar (2-20%) (Marangoni and Allii, 1988; Sawal et al., 2004; Choge et al., 2007). The PJP are shown also to be rich in protein and iron (Galera et al., 1992; Choge et al., 2007). Extensive research is in progress for the utilization of *P. juliflora* pods as animal feed; the *P. juliflora* pods have been used in the diet of feedlot lambs, cattle as well as Omani goats with good nutritional and economic results; and their potentiality as an energy source have been investigated in the diet of Nile tilapia; but they have so far not been investigated as a nutrient source in the diet of carp (Ravikala et al., 1995; Batista et al., 2002; Mahgoub et al., 2005; Mabrouk et al., 2008). Moreover, the pods are quite cheaper as compared to rice bran. Looking to the availability, nutritional quality and low cost, *P. juliflora* pods have been selected in the present study as a carbohydrate source.

Lactic fermentation has been suggested to improve the nutritional quality of plant based fish feed; and a clear improvement in the nutritional quality of carbohydrate fractions by lactic acid fermentation of cereal grains and soybean meal has been observed when used in Atlantic salmon (Skrede et al., 2002; Refstie et al., 2005). Probiotics are increasingly examined as dietary supplements in aquaculture; and their beneficial effects include higher growth and feed efficiency, prevention of intestinal disorders, pre-digestion of antinutritional factors, improvement in health status as well as resistance against infectious agents (Gatesoupe, 1999; Suzer et al., 2008). The common probiotics used in aquaculture are *Lactobaccilus*, *Bacillus*, *Bifidobacterium*, *Saccharomyces* and...
Enterococcus (Kumar et al., 2008). In rohu, addition of Bacillus sp. to leaf meal has been reported to improve their growth rate (Bairagi et al., 2004); and in common carp, Streptococcus faecium have been shown to eliminate E. coli from the alimentary tract and to improve growth rate (Noh et al., 1994). Thus, in the present study the effects of supplementation of lactic acid bacteria cultures to P.juliflora pods based diets and fermentation of P.juliflora pods on growth, feed efficiency, digestibility, digestive enzyme activities as well as gut, fecal matter and tank microflora was investigated.

Materials and methods
Lactic acid bacteria cultures
Three lactic acid bacterial cultures, L. acidophilus, L.bulgari cus and S.thermophilus were procured from the National Dairy Research Institute (NDRI, Chandigarh, India); maintained in sterile reconstituted SAGAR (DudhSagar Dairy, Mahesana, India) skimmed milk (11% wv\(^{-1}\)) as stock cultures and stored at 4°C prior to use. The cultures were checked for the purity by Gram’s staining and by catalase test (AOAC, 1995). For the propagation of cultures in the feed, 0.2 mL (10\(^8\)-10\(^10\) CFU/mL) of stock cultures were inoculated in 20 mL of sterile pannier whey (pH 5.5 for L. acidophilus and L.bulgari cus; pH 7.0 for S.thermophilus) and incubated at 37°C for 24h. Cells were harvested by centrifugation (REMI CPR-24) at 10,000 \(\times\) g for 10 min; cell pellets were suspended in sterile normal saline, counted by pour plate method using Lactobacilli deMan, Rogosa and Sharpe agar (MRS agar), lactic agar and lactic agar + sterile skinned milk (11%wv\(^{-1}\)) (Downes and Ito, 2001) for LA, LB and ST respectively; and all the three cultures were added to the diet separately at the rate of 10\(^7\)-10\(^8\) CFU/gm\(^{-1}\). The L. acidophilus, L. bulgaricus and S.thermophilus cultures were checked for their antagonistic action against rohu gut isolates, coliforms and vibrio sp. by agar–well diffusion method (Nowroozi et al., 2004).

Diet formulation
P.juliflora pods were obtained from the local market, dried at 55°C –60°C, ground into powder to pass through a 0.5mm sieve and used as test feed. The fishmeal of Indian origin was prepared from javla (small shrimps from the cod end of dol net, Jafarabad, Gujarat), oven dried at 50°C–60°C for 24 h and ground to pass through a 0.5mm sieve. Six isonitrogenous (39% crude protein) and isoenergetic(15.9 KJgm\(^{-1}\) gross energy) diets were formulated (Table 2). In the control diet (RD), rice bran was used as the main carbohydrate source. Experimental diets were formulated using crude P.juliflora pods(PJPC), using P.juliflora pods based diets supplemented with L. acidophilus(PJPLA), L. bulgaricus (PJPLB) and S. thermophilus (PJPST) separately as probiotics at the rate of 10\(^7\) to 10\(^8\) cellsg\(^{-1}\); and using P. juliflora pods fermented with L. acidophilus (PJPF) at the rate of 10\(^7\) to 10\(^8\) cellsg\(^{-1}\), incubated for 72h at 37°C and dried at 50°C to 60°C. Maize gluten was used
to adjust total nitrogen content (Bhatt et al., 2011). Before diet formulation, the proximate composition of feed ingredients was checked (Table 1). To the autoclaved feed ingredients, required amounts of vitamin pre-mix, mineral pre-mix, oil-mix and binder were added aseptically. Chromic oxide was used as an external marker for the nutrient digestibility study and bentonite was used as a binder. The feed ingredients were mixed and made into moist pellets of 3 mm in diameter with hand pelletizer, oven dried at 45°C for 24h and stored at 4°C. For the probiotic supplemented diets, the total lactic acid bacterium count (n3) has been checked after drying (0 day) and on 7th day of storage under refrigeration; and the survival rate has been calculated as follows:

\[
\text{Survival (\%)} = \left(\frac{A_o}{A_1} \right) \times 100
\]

Where, \(A_o\) = Number of bacteria on 7th day, \(A_1\) = Number of bacteria on 0 day

Experimental design

Rohu fingerlings were obtained from Gujarat Govt. Fish Seed Centre, Navali (Dist. Anand), acclimatized to laboratory conditions for 15 days and fed with a 1:1 mixture of finely powdered rice bran and groundnut oil cake. The fingerlings (average mean weight 3.80±0.05g) were stocked in glass aquaria (150L – 0.91×0.38×0.45 m³) at the rate of 6Lfish⁻¹ with three replicates for each treatment group. Un-chlorinated tube-well water was used for the experiment. The fish were fed with the formulated diet twice a day at 9.00h and 15.00h at the rate of 5% of the body weight for 60 days. The fish were weighed every week and the feed allowance adjusted accordingly. During experiment, continuous aeration was provided and temperature was maintained at 30°C. The water quality parameters pH, dissolved oxygen (DO) and total organic carbon (TOC) were monitored weekly following the methods of American Public Health Association (APHA, 1998).

For fecal matter collection, first the residual feed particles were siphoned out; and on the next day, faeces were collected before the first feeding by decantation as per the method of Spyridakis et al., (1989) during the last two weeks of experiment. The fecal matter was collected as pooled samples from all the replicates of each treatment group, oven dried at 60°C and analyzed separately for the determination of nutrient digestibility; whereas, for the microbiological analysis, from each treatment group, the fecal samples were collected separately from each replicate on the last two days, pooled and analyzed separately. At the termination of the experiment, five fish were sacrificed from each aquarium and analyzed for carcass composition, intestinal digestive enzyme activity and microbiological studies.

Microbiological analysis of fish gut, fecal matter and aquarium water

The microbiological analysis of fish gut and fecal matter for total viable count, total coliforms, fecal streptococci and presumptive vibrio sp. were carried out by pour plate method using Trypton Soya Agar (TSA), Violet Red Bile Agar (VRBA), Pfizer Selective Enterococcus...
Agar (PSEA) and Thiosulfate Citrate Bile Sucrose (TCBS) agar, respectively (APHA, 1998). The lactic acid bacterial counts of each culture in the feed, gut contents and fecal matter were carried out by pour plate method. In water samples, total coliforms and total fecal streptococci count were determined by most probable number (MPN) technique; whereas total viable and vibrio count was performed by pour plate method (APHA, 1998).

All the media used for the present study were purchased from HiMedia® (HiMedia Laboratories Pvt. Ltd. Mumbai, India).

Chemical analysis
Feed ingredients, experimental feeds, fecal samples and fish carcass were analyzed for their proximate composition following the methods of Association of Official Analytical Chemists (AOAC, 1995) as follows: Moisture was determined by oven drying at 105°C for 24h, protein (N×6.25) by Micro Kjeldahl digestion and distillation after acid digestion, ash by ignition at 550°C in a muffle furnace to constant weight, total dietary fibers by SIGMA KIT (Catalog no. TDF-100A; Sigma, St. Louis, MO, USA), lipid by Folch et al. (1957), total carbohydrate by Anthrone method (Hedge and Hofreiter, 1962) and reducing sugar by 3,5- dinitrosalicylic acid (DNS) method (Miller, 1959). In crude and processed PJP s, spectrophotometer methods used to estimate the relevant parameters are as follows: total phenol (Kakade et al., 1969), tannin (Schanderi, 1970), phytic acid (Wheeler and Ferrel, 1971), trypsin inhibitor (TI) (Baccou et al., 1977) and saponin (Molick and Singh, 1980). The mineral contents of calcium, iron, magnesium and potassium were analyzed by ICP (ICP–Inductively Coupled Plasma spectrometer at SICART, Vallbh Vidyanagar, Gujarat). The energy content of the diets was calculated using the average caloric conversion factors as 9.45 Kcal g⁻¹, 4.10 Kcal g⁻¹ and 5.65 Kcal g⁻¹ for lipid, carbohydrate and protein, respectively (Henken et al., 1986). Nitrogen-free extract (NFE) was computed by taking the sum of values for crude protein, crude lipid, ash, crude fiber, moisture; and subtracting this from 100 (Maynard et al., 1979). Chromic oxide in the diets and faeces was estimated by the method of Furukawa and Tsukahara (1966).

Chemicals used for the analysis of above parameters were purchased from Qualigens® (Qualigen Fine Chemicals, Mumbai, India).

Gut crude digestive enzyme extraction and estimation
The gut was rinsed with chilled distilled water, homogenized with phosphate buffer pH 7.2 (1:10 wv⁻¹) at 4°C, centrifuged (10,000 g × 10 min at 4°C) and the supernatant was stored at -20°C for enzyme analysis. The concentration of soluble protein in pooled samples was determined by the method of Lowry et al. (1951). In the supernatant, α-amylase, protease and lipase activities were assayed by using soluble starch (Qualigens®, Mumbai, India), casein (Qualigens®, Mumbai, India) and olive oil (Figaro, Madrid, Spain) as substrates.
respective (Bernfeld, 1955; Kunitz, 1974; Rathelot et al., 1975).

Calculations and statistical analysis
Growth parameters of the fish were calculated according to Steffens (1989). Specific growth rate (SGR; % day\(^{-1}\)) = \(\frac{\log_e W_2 - \log_e W_1}{t \times 100}\). Feed conversion ratio (FCR) = Dry feed consumed (g) / live weight gain (g).
Protein efficiency ratio (PER) = Weight gain (g) / crude protein consumed (g).
Coefficients of total tract apparent digestibility (CTTAD) of dietary components were calculated as follows:

\[
\text{CTTAD} = 1 - \frac{\text{DC}_F / \text{DC}_D}{\text{ID} / \text{IF}}
\]

Where CTTAD is the coefficient of apparent digestibility of dietary component in the assay diet, DC\(_F\) the dietary component concentration in faeces (g kg\(^{-1}\)), ID the indicator concentration in the assay diet (g kg\(^{-1}\)), DC\(_D\) the dietary component concentration in the assay diet (g kg\(^{-1}\)) and IF the indicator concentration in faeces (g kg\(^{-1}\)).

The data were subjected to a one-way analysis of variance (ANOVA) and the significance of the difference between means was determined by Tukey’s multiple range test \((p<0.05)\) using the SPSS Version 15. Values are expressed as means and S.E.M.

Results
Composition of experimental diets
The proximate composition of feed ingredients and experimental diets are presented in Table 1. Fermentation of \(P.\ juliflora\) pods resulted in significant increase \((p<0.05)\) in the levels of proteins and lipids along with the improvement in reducing sugar contents. The fiber content of \(P.\ juliflora\) pods was observed to be high \((22.40\%)\); and not influenced by fermentation \((22.24\%)\). In fermented \(P.\ juliflora\) pods, phytic acid was completely eliminated; though significant changes in saponins, tannins and total phenol was not detected. The minerals Ca, Fe, Mg and K were found to be significantly higher \((p<0.05)\) in fermented \(P.\ juliflora\) pods as compared to crude \(P.\ juliflora\) pods. In RD, the gross energy and total lipid were comparatively higher, and fiber was lower as compared to test diets; and in PJPF, the gross energy was slightly lower and nitrogen was somewhat higher among the diet groups (Table 2). The survival rates of lactic cultures \(L.\ acidophilus, L.\ bulgaricus\) and \(S.\ thermophilus\) in \(P.\ juliflora\) pods based diet after drying (0 day) and after 7 days of storage (at 4°C) were observed as \(4.69 \times 10^7, 3.61 \times 10^7\) and \(2.23 \times 10^7\) as well as \(2.33 \times 10^7, 1.71 \times 10^7\) and \(0.95 \times 10^7\), respectively. The percent survival rate of \(L.\ acidophilus, L.\ bulgaricus\) and \(S.\ thermophilus\) has been calculated as 49%, 47% and 42%, respectively.

Fish growth and feed utilization
During experiment, rohu fingerlings consumed the feed actively and no mortality was observed. The values of growth performance, feed utilization and digestibility are presented in Table 3. The rohu fingerlings fed with PJPF exhibited significantly higher \((p<0.05)\)
growth and higher feed efficiency in terms of weight gain (325.63±5.44), specific growth rate (SGR) (2.36±0.02), feed conversion ratio (FCR) (1.07±0.01) and protein efficiency ratio (PER) (2.37±0.02) as compared to PJPC; and these values are comparable to those in RD (Table 3). When fish were fed with probiotic supplemented diets, significantly higher (p<0.05) weight gain, SGR, FCR and PER were observed with L. acidophilus (PJPLA) as compared to the diet without probiotics (PJPC), and also as compared to diets supplemented with L. bulgaricus (PJPLB) and S. thermophilus (PJPST) (Table 3). The digestibility of protein, lipid and energy were identical in all dietary treatment groups (Table 3).

Carcass composition and gut digestive enzyme activity
Fish fed with PJPLA (15.90±0.11) and PJPF (16.03±0.11) had significantly higher (p<0.05) carcass crude protein as compared to RD (14.92±0.11) and other experimental diets (Table 4). No clear changes in carcass lipid, moisture and ash as well as in gut α-amylase, protease and lipase activities were detected in different diet groups.

Microbiological analysis of fish gut, fecal matter and aquarium water
In gut homogenate (Fig. 1), LA supplementation (PJPLA) resulted in significant decrease (p<0.05) in coliform counts (3.90±0.12 CFUg⁻¹) as compared to groups without probiotic supplementation (PJPC=4.84±0.09; PJPLA=4.80±0.22; RD=5.14±0.09 CFUg⁻¹); and in all the probiotic supplemented groups, complete elimination of vibrios, significant decrease (p<0.05) in fecal streptococci and increase in the total viable count were detected. When the fecal matter was subjected to microbiological analysis, total viable count, total coliform count, fecal streptococci count and presumptive vibrios count were found to be significantly lower (p<0.05) in the L. acidophilus supplemented group as compared to those in the group without probiotic supplementation (PJPF, RD) (Fig. 2). The water quality parameters, pH, DO and TOC, during the experiment were found to be 6.9-7.4, 6.5-7.6 mgL⁻¹ and 110-115 mgL⁻¹, respectively. In the tank water of probiotic supplemented groups, vibrios were not detected; and total coliforms (PJPLA=110 MPN index100⁻¹ mL⁻¹; PJPLB=540 MPN index100⁻¹ mL⁻¹; PJPST=540 MPN index100⁻¹ mL⁻¹) as well as fecal streptococci count (PJPLA=22 MPN index100⁻¹ mL⁻¹; PJPLB=11 MPN index100⁻¹ mL⁻¹; PJPST=17 MPN index100⁻¹ mL⁻¹) were decreased (Table 5).

The L. acidophilus, L. bulgaricus and S. thermophilus in gut, fecal matter and tank water
With diets PJPLA, PJPLB and PJPST, a colonization of lactic cultures in gut was detected at the end of the 60 days feeding experiment as compared to non-detectable level at the start of the experiment. The count of L. acidophilus, L. bulgaricus and S. thermophilus were measured as 0.76×10⁵ CFUg⁻¹, 0.53×10⁵ CFUg⁻¹ and
0.39×10^3 CFUg⁻¹, respectively in gut; and 0.21×10^3 CFUml⁻¹,
0.23×10^3 CFUg⁻¹, 0.35×10^4 CFUg⁻¹ and
0.42×10^4 CFUg⁻¹, respectively in fecal
matter; and 0.21×10^3 CFUml⁻¹,

Table 1: Proximate composition of diet ingredients and antinutritional factors of treated and untreated Prosopis juliflora
pod meal (as % dry matter unless otherwise stated).

<table>
<thead>
<tr>
<th>Components</th>
<th>Fish meal</th>
<th>Maize gluten</th>
<th>Rice bran</th>
<th>Unfermented Prosopis juliflora</th>
<th>Fermented Prosopis juliflora</th>
<th>S.E.M.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>96.47</td>
<td>91.39</td>
<td>91.1</td>
<td>90.68</td>
<td>90.77</td>
<td>6.38</td>
<td>0.997</td>
</tr>
<tr>
<td>Crude protein</td>
<td>60.37</td>
<td>63.18</td>
<td>13.98</td>
<td>12.05</td>
<td>15.08</td>
<td>0.18</td>
<td><0.05</td>
</tr>
<tr>
<td>Crude lipid</td>
<td>10.08</td>
<td>7.86</td>
<td>10.32</td>
<td>3.20</td>
<td>4.15</td>
<td>0.16</td>
<td><0.05</td>
</tr>
<tr>
<td>Ash</td>
<td>15.58</td>
<td>3.88</td>
<td>8.5</td>
<td>4.76</td>
<td>4.82</td>
<td>0.17</td>
<td>0.988</td>
</tr>
<tr>
<td>Total dietary fiber</td>
<td>2.95</td>
<td>2.15</td>
<td>7.01</td>
<td>22.40</td>
<td>22.24</td>
<td>0.26</td>
<td>0.906</td>
</tr>
<tr>
<td>Reducing sugar NFEa</td>
<td>7.49</td>
<td>11.16</td>
<td>56.44</td>
<td>50.32</td>
<td>46.69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gross energy (KJgm⁻¹)</td>
<td>19.07</td>
<td>19.79</td>
<td>14.22</td>
<td>14.46</td>
<td>15.59</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Antinutritional factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total phenols</td>
<td>0.582</td>
<td></td>
<td></td>
<td>0.598</td>
<td>0.02</td>
<td>0.850</td>
<td></td>
</tr>
<tr>
<td>Tannins</td>
<td>0.973</td>
<td></td>
<td></td>
<td>0.01</td>
<td></td>
<td>0.797</td>
<td></td>
</tr>
<tr>
<td>Phyic acids</td>
<td>0.188</td>
<td></td>
<td></td>
<td>ND</td>
<td>0.05</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Saponin</td>
<td>0.393</td>
<td></td>
<td></td>
<td>0.385</td>
<td>0.02</td>
<td>0.978</td>
<td></td>
</tr>
<tr>
<td>Trypsin inhibitor</td>
<td>ND</td>
<td></td>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TIIgm⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minerals (mgkg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium(Ca)</td>
<td>2718.4</td>
<td></td>
<td></td>
<td>3265.3</td>
<td>1.16</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Iron(Fe)</td>
<td>289.98</td>
<td></td>
<td></td>
<td>1007.5</td>
<td>1.57</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Magnesium(Mg)</td>
<td>1189.4</td>
<td></td>
<td></td>
<td>1261.2</td>
<td>0.98</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Potassium(K)</td>
<td>16936</td>
<td></td>
<td></td>
<td>18893</td>
<td>2.04</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>ND=not detected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Nitrogen free extract calculated as dried matter bases100 – (moisture+crupeprotein+crude lipid+ ash+crude fiber) %
ND=not detected.

S.E.M. and P values are shown for unfermented and fermented PJP.(n=3)

Table 2: Ingredient and proximate composition of reference diet and Prosopis juliflora pods based experimental diets.

<table>
<thead>
<tr>
<th>Ingredient composition (% dry weight)</th>
<th>RD</th>
<th>PJPC</th>
<th>PJPLA</th>
<th>PJPLB</th>
<th>PJPST</th>
<th>PJPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish meal</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>-</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
<td>33.4</td>
</tr>
<tr>
<td>Maize gluten</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Rice bran</td>
<td>33.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mineral Premix</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Vitamin Premix</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Oil pre mix</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Bentonite</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CrO₄⁻</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Lipid</td>
<td>9.10</td>
<td>6.72</td>
<td>6.72</td>
<td>6.72</td>
<td>6.72</td>
<td>7.04</td>
</tr>
<tr>
<td>NFEF</td>
<td>25.0</td>
<td>23.8</td>
<td>23.2</td>
<td>23.5</td>
<td>23.7</td>
<td>22.6</td>
</tr>
<tr>
<td>Gross energy (KJgm⁻¹)</td>
<td>16.09</td>
<td>15.84</td>
<td>15.84</td>
<td>15.84</td>
<td>15.84</td>
<td>15.30</td>
</tr>
</tbody>
</table>

aMaize gluten and Rice bran were purchased from Charotar Animal Feeds Pvt. Ltd., GIDC, V.V.Nagar, Gujarat, India.

bMineral premix (mg or g kg⁻¹ diet): KI (1%), 75 mg; CoCl₂·6H₂O (1%), 30 mg; CuSO₄·5H₂O, 75 mg; FeSO₄·H₂O, 750 mg;
ZnSO₄·H₂O, 1.57 g; MnSO₄·H₂O, 20 mg; Na₂SeO₃·5 H₂O, 45 mg; MgSO₄·7H₂O, 3000 mg; Molybdenum, 0.15 mg.

cVitamin premix (mg or IU kg⁻¹ diet): thiamin, 6 mg; riboflavin, 16 mg; pyridoxine HCL, 9 mg; vitamin B12, 0.44 mg; vitamin K,
0.8 mg; pantothenic acid, 40 mg; niacin 100 mg; folic acid, 0.4 mg; biotin, 0.02 mg; retinol acetate, 24000 IU; Vitamin E, 80 mg;
Vitamin D3, 3000 IU.

dOil Pre mix [2 Corn oil (Tirupati active, N.K.Proteins Co., Mehsana, Gujarat, India) : 1 Cod liver oil (Seacod, Universal Medicare Pvt. Ltd., Mumbai, India)].

eBentonite purchased from Gujarat Minechem, Bhavnagar, Gujarat, India.

fChromic Oxide (Cr₂O₃): Qualigens®, Mumbai, India.

gNitrogen-free extract

RD – Reference diet, PJPC – Prosopis control diet, PJPLA– Prosopis pod meal with Lactobacillus acidophilus, PJPLB – Prosopis pod meal with Lactobacillus bulgaricus009, PJPST – Prosopis pod meal with Streptococcus thermophilus, PJPF – Prosopis pod meal fermented with Lactobacillus acidophilus
Table 3: Growth performance, feed utilization efficiencies and apparent digestibility in *Labeo rohita* fingerlings fed experimental diets for 60-daysa.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RD</th>
<th>PJPC</th>
<th>PJPLA</th>
<th>PJPLB</th>
<th>PJST</th>
<th>PJPF</th>
<th>S.E.M.</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>3.97</td>
<td>3.87</td>
<td>3.51</td>
<td>3.94</td>
<td>3.94</td>
<td>3.59</td>
<td>0.05</td>
<td>0.693</td>
</tr>
<tr>
<td>Final body weight (g)</td>
<td>14.54b</td>
<td>12.07x</td>
<td>14.16aw</td>
<td>13.23aw</td>
<td>13.05y</td>
<td>14.50a</td>
<td>0.11</td>
<td><0.05</td>
</tr>
<tr>
<td>Weight gain (%)</td>
<td>279.93s</td>
<td>225.72s</td>
<td>313.44s</td>
<td>244.55s</td>
<td>241.47s</td>
<td>325.63s</td>
<td>5.44</td>
<td><0.05</td>
</tr>
<tr>
<td>SGR</td>
<td>2.19yz</td>
<td>1.93x</td>
<td>2.33x</td>
<td>2.04yz</td>
<td>2.02yz</td>
<td>2.36x</td>
<td>0.02</td>
<td><0.05</td>
</tr>
<tr>
<td>FCR</td>
<td>1.15 sy</td>
<td>1.31z</td>
<td>1.10z</td>
<td>1.21yz</td>
<td>1.23z</td>
<td>1.07z</td>
<td>0.01</td>
<td><0.05</td>
</tr>
<tr>
<td>PER</td>
<td>2.21yz</td>
<td>1.96x</td>
<td>2.35x</td>
<td>2.16yz</td>
<td>2.12yz</td>
<td>2.37x</td>
<td>0.02</td>
<td><0.05</td>
</tr>
<tr>
<td>Feed intake</td>
<td>191.35</td>
<td>173.66</td>
<td>181.43</td>
<td>179.65</td>
<td>178.75</td>
<td>185.23</td>
<td>0.05</td>
<td>0.173</td>
</tr>
</tbody>
</table>

Means value with the same superscript letters in the same row is not significantly different (p>0.05) from each other. Statistical analysis was not possible as determinations were performed on pooled samples.

Table 4: Proximate carcass composition (% wet weight) and digestive enzyme activity of the experimental fishes at the end of the 60-day feeding experimenta.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RD</th>
<th>PJPC</th>
<th>PJPLA</th>
<th>PJPLB</th>
<th>PJST</th>
<th>PJPF</th>
<th>S.E.M.</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>73.32</td>
<td>73.75</td>
<td>73.13</td>
<td>73.35</td>
<td>73.47</td>
<td>73.10</td>
<td>1.90</td>
<td>1.000</td>
</tr>
<tr>
<td>Protein</td>
<td>14.92a</td>
<td>14.87b</td>
<td>15.90y</td>
<td>14.98x</td>
<td>14.95x</td>
<td>16.03z</td>
<td>0.11</td>
<td><0.05</td>
</tr>
<tr>
<td>Lipid</td>
<td>4.45</td>
<td>4.40</td>
<td>4.75</td>
<td>4.50</td>
<td>4.45</td>
<td>4.81</td>
<td>0.05</td>
<td>0.958</td>
</tr>
<tr>
<td>Ash</td>
<td>3.08</td>
<td>3.15</td>
<td>2.93</td>
<td>2.98</td>
<td>3.03</td>
<td>2.90</td>
<td>0.07</td>
<td>1.000</td>
</tr>
<tr>
<td>Digestive enzymes activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Amylase</td>
<td>2.10</td>
<td>2.04</td>
<td>2.23</td>
<td>2.15</td>
<td>2.12</td>
<td>2.26</td>
<td>0.05</td>
<td>1.000</td>
</tr>
<tr>
<td>Protease</td>
<td>0.48</td>
<td>0.45</td>
<td>0.50</td>
<td>0.48</td>
<td>0.46</td>
<td>0.49</td>
<td>0.008</td>
<td>0.052</td>
</tr>
<tr>
<td>Lipase</td>
<td>5.15</td>
<td>5.10</td>
<td>5.22</td>
<td>5.18</td>
<td>5.15</td>
<td>5.26</td>
<td>0.04</td>
<td>0.292</td>
</tr>
</tbody>
</table>

Means value with the same superscript letters in the same row is not significantly different (p>0.05) from each other.

α-Amylase = mg maltose liberated/h/mg protein; Protease = mg tyrosine liberated/h/mg protein; Lipase = U/mg protein

Table 5: Microbiological analysis of aquarium water sample.

<table>
<thead>
<tr>
<th>Aquarium</th>
<th>No. of coliforms (MPN index100mL⁻¹)b</th>
<th>No. of streptococci (MPN index 100mL⁻¹)b</th>
<th>Total viable count (CFU/mL)a</th>
<th>Presumptive Vibrio sp. (CFU/mL)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD</td>
<td>>1600</td>
<td>49</td>
<td>0.23x10⁵</td>
<td>165a</td>
</tr>
<tr>
<td>PJPC</td>
<td>>1600</td>
<td>26</td>
<td>0.34x10⁵</td>
<td>148y</td>
</tr>
<tr>
<td>PJPLA</td>
<td>110</td>
<td>22</td>
<td>0.49x10⁵</td>
<td>ND</td>
</tr>
<tr>
<td>PJPLB</td>
<td>540</td>
<td>11</td>
<td>0.54x10⁵</td>
<td>ND</td>
</tr>
<tr>
<td>PJST</td>
<td>540</td>
<td>17</td>
<td>0.45x10⁵</td>
<td>ND</td>
</tr>
<tr>
<td>PJPF</td>
<td>>1600</td>
<td>27</td>
<td>0.37x10⁵</td>
<td>138a</td>
</tr>
</tbody>
</table>
Table 5 continued:

<table>
<thead>
<tr>
<th></th>
<th>S.E.M.</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.02</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>1.82</td>
<td><0.05</td>
</tr>
</tbody>
</table>

ND = not detected

a Means value with the same superscript letters in the same column is not significantly different (*p* > 0.05) from each other.

b The statistics is not required as the data suggest most probable numbers (MPN method).

RD – Reference diet, PJPC – Prosopis control diet, PJPLA – Prosopis pod meal with *Lactobacillus acidophilus*, PJPLB – Prosopis pod meal with *Lactobacillus bulgaricus*009, PJPST – Prosopis pod meal with *Streptococcus thermophilus*, PJPF – Prosopis pod meal fermented with *Lactobacillus acidophilus*

![Microbiological analysis of fish gut](image1)

Figure 1: Microbiological analysis of fish gut. [Means within a column with different superscripts are significantly different (*p* < 0.05)].

![Microbiological analysis of fecal matter](image2)

Figure 2: Microbiological analysis of fecal matter. [Means within a column with different superscripts are significantly different (*p* < 0.05)].

RD – Reference diet, PJPC – Prosopis control diet, PJPLA – Prosopis pod meal with *Lactobacillus acidophilus*, PJPLB – Prosopis pod meal with *Lactobacillus bulgaricus*009, PJPST – Prosopis pod meal with *Streptococcus thermophilus*, PJPF – Prosopis pod meal fermented with *Lactobacillus acidophilus*
Discussion
The fermentation of PJP with \textit{L. acidophilus} improved its protein, lipid and mineral contents; and totally eliminated the phytic acid. Moreover, the \textit{P. juliflora} pods based diet, supplemented with \textit{L. acidophilus} as live cells, improved the microflora in the gut, fecal matter and tank. Both of these resulted in higher growth and better carcass quality of fish.

The major carbohydrate sources reported to be used in carp feed as dietary sources of energy are maize, sorghum, wheat, rice and barley (Belal, 1999). The \textit{P. juliflora} pod is a cheaper agro-based unutilized source available in plenty in many parts of the world. The presently used \textit{P. juliflora} pods are found to be rich in protein (12.05\%), gross energy (14.46 KJg$^{-1}$), reducing sugar (5.60\%), Ca (2718.4 mgkg$^{-1}$), Mg (1189.4 mgkg$^{-1}$) and K (16936 mgkg$^{-1}$); pods are free from trypsine inhibitor; and they are also found to contain antinutritional factors like total phenol (0.582\%), tannins (0.973\%), saponins (0.393\%) and fibers (22.40\%) (Table 1). These values are comparable to the pod values reported by several investigators as 7 to 22 \% protein, 30 to 75 \% carbohydrate, 11 to 35 \% crude fibers, 1 to 6 \% fat and 3 to 6 \% ash (Choge \textit{et al.}, 2007). The nutritive quality of pods is found to be comparable to several other carbohydrate sources being investigated in the fish diets (Belal, 1999; Skrede \textit{et al.}, 2002). Moreover, the carbohydrate contents, mainly sucrose and glucose, are reported to be higher in \textit{P. juliflora} pods as compared to barley and wheat (Skrede \textit{et al.}, 2002; Choge \textit{et al.}, 2007).

In the present experiment, fermentation of \textit{P. juliflora} pods with \textit{L. acidophilus} resulted in significant increase ($p<0.05$) in protein, lipid content and reducing sugar; it resulted in complete elimination ($p<0.05$) of phytic acid and increase ($p<0.05$) in the levels of minerals Ca, Fe, Mg and K; however, the fermentation did not reduce the level of total dietary fibers, tannin and saponin in pods (Table 1). The nutritional quality of several plant based feeds like sesame seed meal, soybean white flakes, grains, leaf meals and lathyrus seed meal are known to have improved after fermentation with beneficial bacterial strains for the diet of cultivable fish species (Mukhopadhyay and Ray, 1999; Bairagi \textit{et al.}, 2002, 2004; Ramachandran \textit{et al.}, 2005). Presently observed increase ($p<0.05$) in protein reflect the active protein metabolism by the lactobacilli; and the simultaneous increase ($p<0.05$) in lipid in fermented pods is in agreement with increase in the nutrient level through microbial synthesis during fermentation of plant feed as reported by Wee (1991). Lactic acid fermentation is known to improve the protein and lipid contents in sesame seed meal (Mukhopadhyay and Ray, 1999); and it has altered the peptide composition in soybean white flakes (Refstie \textit{et al.}, 2005). In the fermented \textit{P. juliflora} pods, with complete elimination of phytic acid, increase ($p<0.05$) in the levels of minerals indicates effectiveness of lactic culture in the elimination of phytic acid,
possibly by bacterial phytase production. In monogastric animals, phytic acid was reported to act as chelater and it reduces the availability of minerals and proteins (Skrede et al., 2002; Ramachandran et al., 2005). Lactic acid fermentation has been reported to increase the levels of glucose, fructose and maltose as well as to lower the levels of sucrose and raffinose in wheat flour; and it is found to reduce non starch carbohydrates in barley whole meal (Skrede et al., 2002). The change in the sugar composition of fermented *P. juliflora* pods suggests that lactic culture has metabolized carbohydrates, possibly sucrose. This is possibly because sucrose is known to be the main soluble sugar content of pods (Choge et al., 2007); and lactic cultures are known to ferment sucrose actively (Refstie et al., 2005). A considerable decrease in fiber and tannin has been reported in leaf meal and grass pea seed meal when fermented with *Bacillus* (Bairagi et al., 2002, 2004). Though presently used lactic acid fermentation has not reduced the level of total dietary fibers, tannin and saponin in pods, the 3.2 gkg\(^{-1}\) of tannin and 1.2 gkg\(^{-1}\) of saponin in the presently formulated test diets may not have affected the fish growth because test diets with 2.3 to 4.0 gkg\(^{-1}\) of tannin and 0.7 to 1.2 gkg\(^{-1}\) of saponin were reported to not cause any negative effect on growth and feed utilization in carp (Hossain et al., 2001).

The growth performance and feed efficiency in terms of weight gain, SGR, FCR and PER were significantly higher (\(p < 0.05\)) with fermented *P. juliflora* pods as compared to crude *P. juliflora* pods; the feed intake was found to be similar among experimental groups; and the above values were quite comparable to the RD. Incorporation of pods in animal feed has shown promising results; and has exhibited improvement in dry matter intake, weight gain and feed conversion with decrease in feed cost in livestock (Rao and Reddy, 1983; Habit and Saavedra, 1988; Mahgoub et al., 2005). Growth obtained for rohu with fermented *P. juliflora* pods during the present investigation is found to be better than with several other fermented feed like leucaena and duckweed leaf meal (Bairagi et al., 2002, 2004) as well as sesame seed meal (Mukhopadhyay and Ray, 1999), grass pea meal (Ramachandran et al., 2005) and black gram seed meal (Ramachandran and Ray, 2007). The higher growth and better feed efficiency of rohu fed with fermented PJP appear to be due to improvement in the nutritional quality of fermented pods. At the same time, though the fiber contents of crude and fermented pods are higher as compared to rice bran, the total fiber contents of formulated experimental diets (90gkg\(^{-1}\)) are in permissible limit for carp as reported by Erfanullah and Jafari (1998). The nutrient digestibility of *P. juliflora* pods based diets indicates that the dry matter digestibility, nutrient digestibility and energy digestibility are in the same range as in the control diets. This indicates that the pods are as digestible as rice bran for rohu fingerlings; and the digestibility of fermented pods is found to be better as
compared to the digestibility of fermented soybean meal and cereals in the diet of cultivable fish species as reported by Skrede et al. (2002), Ramachandran et al. (2005) and Refstie et al. (2005).

The diet with fermented *P. juliflora* pods produced significantly higher (*p*<0.05) protein level in carcass. At the same time, it did not cause any significant changes in carcass moisture, lipid and ash as well as in digestive enzyme activities α-amylase, protease and lipase in different groups of fishes (Table 4). This indicates that *P. juliflora* pods as a carbohydrate source did not cause any negative effects on the digestive enzyme activities and carcass composition of fishes. The significant increase in carcass protein in PJPF group is in agreement with Mukhopadhyay and Ray (1999), Bairagi et al. (2002) and Ramachandran & Ray (2007). The significant increase in carcass protein is likely to be due to the protein sparing effect of the presently used fermented pods (Wilson, 1994; Erfanullah and Jafri, 1998).

Use of probiotics in feed resulted in complete elimination of vibrios in gut and tank water; and decrease in the count of other pathogenic indicator organisms in gut, fecal matter and tank water (Figs. 1, 2 and Table 5). This indicates the antagonism of pathogenic bacteria and effectiveness of the presently used probiotic cultures in improving fish microbiology, especially with *L. acidophilus*. This improvement in microflora is likely to have been achieved by the production of bacteriocins, organic acids and hydrogen peroxide by probiotic cultures; and/or by competing for essential nutrients as suggested by Fuller (1989). The improvements in growth, feed efficiency and carcass quality with probiotic supplemented feed appear to be related with the improvements in the intestinal microflora of fish as well as the tank microflora. Probiotic supplementation in the diet has been reported to improve the intestinal microflora by enhancing beneficial microorganisms (Suzer et al., 2008) and by reducing the pathogenic problems in intestine (Fuller, 1989; Yanbo and Zirong, 2006). In a similar study, Ahilan et al., (2004) observed retardation of coliforms by lactobacilli in juvenile gold fish; and probiotic *Halomonas* sp. B12 (isolated from the intestine of *Fenneropenaeus chinensis*) was observed to be very effective in reducing the intestinal vibrios count in shrimps (Zhang et al., 2009). Recently in aquaculture, use of probiotics to enhance the growth performance of cultivable species and to improve the water quality has received attention (Al-Dohail et al., 2009). Moreover, decrease in the antinutritional factors in *L. acidophilus* supplemented feed during the present investigation could also be one of the reasons for the improvement in the growth of the fish because the beneficial microflora have been reported to pre-digest the antinutritional factors present in the diet (El-Haroun et al., 2006; Suzer et al., 2008). Incorporation of probiotics in the diet has been reported to improve growth in common carp (Yanbo and Zirong, 2006), nile tilapia (El-Haroun et al., 2006); and *Pseudomonas* sp. B12 (isolated from the intestine of *Fenneropenaeus chinensis*) was observed to be very effective in reducing the intestinal vibrios count in shrimps (Zhang et al., 2009). Recently in aquaculture, use of probiotics to enhance the growth performance of cultivable species and to improve the water quality has received attention (Al-Dohail et al., 2009). Moreover, decrease in the antinutritional factors in *L. acidophilus* supplemented feed during the present investigation could also be one of the reasons for the improvement in the growth of the fish because the beneficial microflora have been reported to pre-digest the antinutritional factors present in the diet (El-Haroun et al., 2006; Suzer et al., 2008). Incorporation of probiotics in the diet has been reported to improve growth in common carp (Yanbo and Zirong, 2006), nile tilapia (El-Haroun et al., 2006).
al., 2006), shrimps (Venkat et al., 2004) and in rohu (Ghosh et al., 2003).

In the present study, the viable probiotic count was maintained at about 10^7 cells g$^{-1}$ of feed during storage at 4°C. Moreover, among the lactic cultures, the survival rate of *L. acidophilus* in *P. juliflora* pods based diet was found to be higher after drying and on the 7th day of storage. Viability of probiotic cultures in the diet before consumption is a very important aspect for its beneficial effects (Havenaar et al., 1992). The presently observed level of lactic acid bacteria appears to be sufficient to give probiotic effects as reported by Nousiainen and Setala (1993).

The present investigation suggests that *P. juliflora* pods can be used in the diet of *L. rohita* (rohu) fingerlings as a carbohydrate source after fermentation with *Lactobacillus acidophilus*. The lactic acid fermentation improves the nutritional value of pods resulting in better growth and carcass composition of rohu. The *L. acidophilus* as live cell supplement to the *P. juliflora* pods based diet also improves the growth and carcass composition of rohu by improving the gut as well as tank microflora.

Acknowledgments

We sincerely thank the referee for the very careful critical reading of the paper and for several corrections and suggestions on the organization of the paper. We gratefully acknowledge the research support by the University Grant Commission (UGC), India (UGC Major Research Project # No.F.31-228/2005 (SR)).

References

(Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerling after fermentation with a fish intestinal bacterium. Bioresource Technology, 85, 17–24.

Kumar, R., Mukherjee, S.C., Ranjan, R. and Nayak, S.K., 2008. Enhanced innate immune parameters in Labeo rohita (Ham.) following
oral administration of *Bacillus subtilis*. *Fish and Shellfish Immunology*, 24, 168–172.

Steffens, W., 1989. Principles of fish nutrition. Ellis Horwood, Chichester, UK.

