Identification of by-catch species of tuna purse seiners in Iranian waters of Oman Sea

Parsa M.1; Kamrani E.1*; Safaei M.1; Paighambari S.Y.2; Nishida T.3

Received: May 2016 Accepted: August 2016

1- Faculty of Marine Sciences and Technologies, University of Hormozgan, Bandar Abbas, Iran
2- Environmental and Fisheries Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3- National Research Institute of Far Seas Fisheries, Fisheries Research Agency, Shimizu, Shizuoka, Japan
*Corresponding author’s Email: eza47@gmail.com

Keywords: By-catch, Tuna, Purse seine, Oman Sea

Introduction
One of the most visible direct impacts of fishing is the capture of non-target species, known collectively as by-catch. By-catch includes species that are unwanted and discarded (discards) and species that are retained and sold (byproduct) (Stobutzki et al., 2003). Although tuna purse seine fisheries have been shown to be selective, leading to lower levels of by-catch than other fisheries (Alverson et al., 1994; Kelleher, 2005), several species can be incidentally caught and, in some cases, discarded at sea. These include vulnerable and sensitive species such as turtles, mammals, and sharks (Minami et al. 2007; Romanov, 2008b). Tuna purse seine fisheries probably apply the most intensive direct human impact on the tropical epipelagic ecosystems in all oceans. Because of the worldwide scale of purse seine fisheries, an assessment of their impact on associated and dependent species is essential (Romanov, 2002a).

The Oman Sea, with an area of 94,000 km² and a depth reaching 3,200 m, can be assumed to be oceanic in its nature as it is connected to the Indian Ocean by the Arabian Sea (Ghotbeddin et al., 2014). The tuna purse seine fishery is a commercial and industrial fishery in the Iranian waters of Oman Sea. The main target species of the tuna purse seine fishery in waters of Oman Sea are large pelagic fish such as longtail tuna (Thunnus tonggol Bleeker, 1851), Yellowfin tuna (Thunnus albacares Bonnaterre, 1788) and skipjack tuna (Katsuwonus pelamis Linnaeus, 1758). In Iranian waters of Oman Sea, studies on the by-catch of the purse seine fishery are scarce. Therefore, the present study aims to identify the by-catch composition of
the tuna purse seine fishery in the
Iranian waters of the Oman Sea, which
presents beneficial data for
management purposes.

Materials and methods
The study was carried out between
September and October 2015 in the
Iranian waters of Oman Sea (Fig. 1).
An observer programme was conducted
to identify the by-catch composition of
the tuna purse seine fishery.
Investigations were carried out on
board a commercial purse seiner vessel
“Parsian Shila” (1800 Gross registered
tonnage) with 99.5 m overall length, 4-5m
width, equipped with a Global
Positioning System (GPS), Sonar, echo
sounder and a purse seine net. The
purse seine net had a float line about
1886 m long with about 300 buoys (a
buoy every 50cm) and a lead line of
about 2026 m. The maximum altitude
of the net (stretched net depth) is about
210 m and stretched mesh size varying
between 16 and 18 mm.

A total of 64 purse seine hauls was
sampled. For each purse seine haul, the
by-catch species were separated from
the total catch, counted and identified to
species or genus according to Fischer
and Bianchi (1984), Carpenter
frequency of by-catch species were
measured with 1 cm precision.

Results and discussion
By-catch species, number and length
frequency are given in Table 1. The by-
catch species composition included
bony fishes: frigate tuna (*Auxis
thazard*), common dolphinfish (*Coryphaena
hippurus*), Indo-Pacific sailfish (*Istiophorus
platypterus*), black marlin (*Makaira
indica*), sawtooth barracuda (*Sphyraena
putnamiae*), pickhandle barracuda (*Sphyraena
jello*), sharksucker (*Echeneis
naucrates*), rainbow runner (*Elagatis
bipinnulata*), pilot fish (*Naucrates
ductor*), bigeye scad (*Selar crumenophthalmus*), Sharks
and rays: Milk shark (*Rhizoprionodon
acutus*), whale shark (*Rhincodon
typus*), pelagic thresher (*Alopias
pelagicus*),
longtail butterfly ray (*Gymnura poecilura*) and Turles: green sea turtle (*Chelonia mydas*).

Table 1: Bycatch species composition of tuna purse seine fishery in Iranian waters of Oman Sea.

<table>
<thead>
<tr>
<th>Fish groups</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Number</th>
<th>Number (%)</th>
<th>Length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scombridae</td>
<td>Auxis thazard</td>
<td>Frigate tuna</td>
<td>18</td>
<td>22.79</td>
<td>25-66 FL</td>
</tr>
<tr>
<td>Bony fishes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coryphaenidae</td>
<td>Coryphaena hippurus</td>
<td>Common dolphinfish</td>
<td>9</td>
<td>11.4</td>
<td>65-92 FL</td>
</tr>
<tr>
<td>Istiophoridae</td>
<td>Istiophorus platypterus</td>
<td>Indo-Pacific sailfish</td>
<td>10</td>
<td>12.66</td>
<td>116-223 FL</td>
</tr>
<tr>
<td>Istiophoridae</td>
<td>Makaira indica</td>
<td>Black marlin</td>
<td>4</td>
<td>5.07</td>
<td>195-255 FL</td>
</tr>
<tr>
<td>Sphyraenidae</td>
<td>Sphyraena putnamae</td>
<td>Sawtooth barracuda</td>
<td>4</td>
<td>5.07</td>
<td>78-105 FL</td>
</tr>
<tr>
<td>Istiophoridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphyraenidae</td>
<td>Sphyraena jello</td>
<td>Pickhandle barracuda</td>
<td>1</td>
<td>1.26</td>
<td>120 FL</td>
</tr>
<tr>
<td>Echeneidae</td>
<td>Echeneis naucrates</td>
<td>Sharksucker</td>
<td>2</td>
<td>2.54</td>
<td>48-59 TL</td>
</tr>
<tr>
<td>Carangidae</td>
<td>Elagatis bipinnulata</td>
<td>Rainbow runner</td>
<td>3</td>
<td>3.8</td>
<td>75-93 FL</td>
</tr>
<tr>
<td>Carangidae</td>
<td>Naucrates duxtor</td>
<td>Pilot fish</td>
<td>1</td>
<td>1.26</td>
<td>31 FL</td>
</tr>
<tr>
<td>Carangidae</td>
<td>Selan crumenophthalmus</td>
<td>Bigeye scad</td>
<td>1</td>
<td>1.26</td>
<td>22 FL</td>
</tr>
<tr>
<td>Sharks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcharhinidae</td>
<td>Rhizoprionodon acutus</td>
<td>Milk shark</td>
<td>19</td>
<td>24.05</td>
<td>158-247 TL</td>
</tr>
<tr>
<td>Rhincodontidae</td>
<td>Rhincodon typus</td>
<td>Whale shark</td>
<td>1</td>
<td>1.26</td>
<td>373 TL</td>
</tr>
<tr>
<td>Alopidae</td>
<td>Alopias pelagicus</td>
<td>Pelagic thresher</td>
<td>1</td>
<td>1.26</td>
<td>261 TL</td>
</tr>
<tr>
<td>Rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnoridae</td>
<td>Gymnura poecilura</td>
<td>Longtail butterfly ray</td>
<td>1</td>
<td>1.26</td>
<td>26 DL</td>
</tr>
<tr>
<td>Mobulidae</td>
<td>Mobula diabolus</td>
<td>Devil ray</td>
<td>1</td>
<td>1.26</td>
<td>87 DL</td>
</tr>
<tr>
<td>Myliobatidae</td>
<td>Aetobatus narinari</td>
<td>Spotted eagle ray</td>
<td>1</td>
<td>1.26</td>
<td>47 DL</td>
</tr>
<tr>
<td>Turtles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheloniidae</td>
<td>Chelonia mydas</td>
<td>Green sea turtle</td>
<td>2</td>
<td>2.54</td>
<td>-</td>
</tr>
</tbody>
</table>

The by-catch was composed of 17 species belonging to 13 families, of which 10 species were teleostei from 13 families, 6 species were elasmobranch from 6 families and one species was *Chelonia mydas* belonging to turtles. The most number of by-catch were *Rhizoprionodon acutus* (24.05%) and *Auxis thazard* (22.79%). Among the teleostei species, Carangidae had the most species (3 species), followed by the Istiophoridae (2 species) and Sphyraenidae (2 species).

Among the species registered during this study, the majority were pelagic. Over the study period, a total of 2 individual of turtle (*Cheloniidae: Chelonia mydas*) were caught and all of the turtles were discarded alive. Fig. 2 shows the percentage of by-catch groups from tuna purse seine fishery in Oman Sea. Bony fish with 67.11%, elasmobranches with 30.35% and turtles with 2.54% constituted the total by-catch individual.

In this study, by-catch composition of the tuna purse seine fishery in the Iranian waters of the Oman Sea was identified.
According to Hall and Mainprize (2005), management and mitigation of by-catch is the most pressing issue facing the commercial fishing industry worldwide. Rochet and Trenkel (2005) declared that incidental by-catch and associated discarding are difficult to estimate on the basis of log-book information; because they are poorly reported by fishing masters and their importance varies according to several interrelated factors.

Studies on identification and investigation of by-catch species in tuna fisheries have been carried out in different regions. Romanov (2002a), in a study conducted in the tuna purse seine fisheries of the western Indian Ocean, reported that the most frequently found species in the by-catch of purse seiners were sharks (*Carcharhinus falciformis* and *Isurus oxyrinchus*), rainbow runner (*Elagatis bipinnulata*), dolphinfish (*Coryphaena hippurus*), triggerfish (*Canthidermis maculatus*), wahoo (*Acanthocybium solandri*) and billfishes (*Istiophorus platypterus* and *Makaira indica*).

Amanda et al. (2012) identified the bycatch species of purse seine fishery in the Indian Ocean (Bony fish: 19 species, Sharks and rays: 8 species and Turtles: 4 species) and declared that the dominant species of bycatch were rays (*Mobula* spp.) juveniles of skipjack tuna (*Katsuwonus pelamis*), frigate tuna (*Auxis thazard*) and bullet tuna (*Auxis rochei*) that these species constituted 59% of total bycatch.

Understanding and identifying the by-catch species from Iranian tuna fishing vessels is critical and Fisheries Organizations will always be under pressure to manage harvesting of fish resources. With responsible fishing, all fisheries sections (fishermen, researchers and Fisheries Organizations) can benefit and protect fish stocks. Information about by-catch species of purse seine in Iranian waters of Oman Sea is lacking and this paper is the first report about by-catch species in this area. Therefore, results of this study provide valuable information in order to manage reduction of by-catch in purse seine fisheries and access a sustainable
management on fish resources in
Iranian waters of Oman Sea.

Acknowledgements
The authors thank the staff of Salem
Chabahar Company in particularly
Alireza Sikaroodi and Enayatollah
Kalantarian. We also appreciate
captains and crew of purse seiner vessel
“Parsian Shila” for their cooperation.

References
Alverson D.L., Freeberg M.H., Pope
J.G. and Murawski S.A., 1994. A
global assessment of fisheries
bycatch and discards. FAO Fisheries
Technical Papers, 233P.
Amande, M.J., Chassot, E.,
Chavance, P., Murua, H., Molina,
A.D. and Bez, N., 2012. Precision in
bycatch estimates: the case of tuna
purse-seine fisheries in the Indian
Ocean. ICES Journal of Marine
Science, 69(8), 1501-1510.
Carpenter, K.E., Krupp, F., Jones,
marine resources of Kuwait, Eastern
Saudi Arabia, Bahrain, Qatar and the
United Arab Emirates. Food and
Agriculture Organization, UN,
Rome, 324P.
FAO species identification sheets for
fishery purposes, western Indian
Ocean. FAO Press, Rome, 200P.
Ghotbeddin, N., Javadzadeh, N. and
Azbir, M.T., 2014. Catch per unit
area of Batoid fishes in the Northern
Oman Sea. Iranian Journal of
Fisheries Sciences, 13, 47-57.
Managing by-catch and discards:
how much progress are we making
and how can we do better? Journal
of Fish and Fisheries, 6, 134–155.
Kelleher, K., 2005. Discards in the
world’s marine fisheries: an update.
FAO Fisheries Technical Papers.
470, Rome, 131P.
Minami, M., Lennert-Cody, C.E.,
Gao, W. and Romàn-Verdesoto,
M., 2007. Modeling shark bycatch:
The zero-inflated negative binomial
regression model with smoothing.
 Fisheries Research, 84, 10-221.
Nelson, J.S., 2006. Fishes of the world,
4th edn. John Wiley and Sons, Inc.,
New York, 622P.
Rochet M.J. and Trenkel, V. M.,
2005. Factors for the variability of
discards: assumptions and field
evidence. Canadian Journal of
Fisheries and Aquatic Sciences, 62,
224-235.
Romanov, E.V., 2002a. Bycatch in the
tuna purse-seine fisheries of the
western Indian Ocean. Journal of
Fishery Bulletin, 100(1), 90–105.
Romanov, E.V., 2008b. Bycatch and
discards in the Soviet purse seine
tuna fisheries on FAD-associated
schools in the north equatorial area
Stobutzki, I., Jones, P. and Miller,
bycatch communities between areas
open and closed to prawn trawling in
an Australian tropical fishery. ICES
Journal of Marine Science, 60, 951–
966.