Use of solid state fermented bambara nut meal as substitute of fishmeal in the diets of African catfish

Clarias gariepinus

Enyidi U.D.1*; Etim E.O.1

Received: November 2017 Accepted: December 2018

Abstract

The use of plant proteins in substituting fishmeal (FM) is mitigated by several anti nutritional factors (ANF) like phytic acid, non starch polysaccharides and protease inhibitors. Fermentation of the plant ingredients can reduce the ANF and improve feed utilization and growth rate of fish. We produced five isonitrogenous and isocaloric diets using solid state fermented bambara nut meal (BNM). Fermented BNM substituted FM in diets of African catfish Clarias gariepinus. The FM: BNM inclusion percentages of the diets were, F1, 50:5; F2, 35:20; F3, 20:35; F4, 5:50 and F5, 0:56. There was a control feed labelled as F6. Feed F6 was a variant of F1 but with non fermented BNM. Fingerling African catfish C. gariepinus with average weight 5.14±0.05 g were fed with the diets for 56 days. Specific growth rate (SGR) was best for the catfish fed with F1, 7.82±0.25 % day\(^{-1}\), followed by those fed with F6, 7.35±0.24 % day\(^{-1}\). There were, however, no differences in SGR of F2, 7.26±0.18 % day\(^{-1}\) and F6. The food conversion ratio was lowest and best for the catfish fed with F1, 1.24±0.19 and F2 1.34±0.06. The growth and nutritional performance of fish fed with F2 were as good as F1 and cost-effective. Feeds made from fermented BNM had better FCR than those from raw BNM. Fermentation increased the protein and amino acid content of the BNM and the catfish gained more weight than from raw BNM. The effects of ANF seem to be highly reduced in solid-state fermented BNM thereby enhancing catfish growth.

Keywords: Solid state fermentation, Fishmeal substitution, Food conversion ratio, Plant proteins, Specific growth rate

1-Department of Fisheries and Aquatic Resources Management, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
*Corresponding author's Email: enyidiuche@yahoo.com
Introduction
The high cost of fishmeal especially in developing world has necessitated search for plant protein alternatives (Hardy and Tacon, 2002; Lunger et al., 2006; Hardy, 2010). Leguminous plants are among the plausible protein sources but majority of them are underutilised or poorly known (Bhat and Karim, 2009). This situation necessitates the search for nutritive leguminous plant, especially those with lesser competition as human food, as fish meal alternatives (Lunger et al., 2006; Hardy, 2010). Many plant feedstuffs have received attention in recent years. However, due to amino acid imbalances and low percent protein content their usages are limited (Hemre et al., 2009; Enyidi, 2012). Moreover, use of plant proteins as fishmeal substitute is limited by the presence of anti nutritional factors (ANF) inherent in the ingredients (Krogdahl and Holm, 1981; Francis et al., 2001; Krogdahl et al., 2010). There are many ANFs in plant meals such as proteinases inhibitors, oligosaccharides, and phytic acids (phytate) (Raboy and Dickinson, 1993; Francis et al., 2001; Gatlin et al., 2007; Krogdahl et al., 2010), trypsin inhibitors, amylase inhibitors (Liener and Kakade, 1980; Robinson and Li, 1996; Hemre et al., 2009), tannins, saponins alkaloids, non starch polysaccharides, (Duke, 1981; Yoon et al., 2003; Francis et al., 2005; Krogdahl et al., 2010). ANF interferes with digestion, assimilation and utilization of the nutrients in plant proteins (Storebakken et al., 1998; Refstie et al., 1999). Some plant proteins contain gossypol (Dorsa et al., 1982 Yildirim-Aksoy et al., 2004; Imorou Toko et al., 2008) which interferes with fish reproduction. In some instances carbohydrates, such as α-galactosyl derivatives of sucrose (GOSs) and non-starch polysaccharides (NSP) are also classified as ANF (Chocet et al., 2010). Some NSP like pectins, galactans, cellulose and lignin can cause high faecal water (Olli and Krogdahl, 1994; Refstie et al., 1999). NSPs also interfere with digestion and assimilation. Some NSP including arabinan, arabinogalactan and acid polysaccharides can bind minerals in the intestine and hinder digestibility of fat (Storebakken et al., 1998). Many plant ingredients that are plausible fishmeal substitutes have NSP (NRC, 1993). Naturally, the NSPs are degraded mainly through enzymatic complex associated with cellulolytic bacteria belonging to the phylum Actinobacteria. The phyla Actinobacteria are sometimes found in the gut of termites and fungal organisms (Wenzel et al., 2002; Wei et al., 2009; Wilson, 2011). Among the identified cellulolytic bacteria, the major phylum is the Actinobacteria genus Streptomyces. The Actinobacteria are associated with enzymatic and bioactive substances including cellulase, pectinase and hemicellulase and also in the excretion of various antibiotics or bacteriocins (Killham and Prosser, 2007; Brijwani et al., 2010; Dharmaraj, 2010).

Solid state fermentation is known to reduce or remove ANF from plant-based ingredients (Mukhopadhyay and Ray, 1999; Yoon et al., 2003; Servi et
This can be very useful in aquafeed production using plant proteins. Fermentation is also known to increase the availability of nutrients, minerals and available protein (Lio and Wang, 2012; Khodanazary et al., 2013; Shi et al., 2015). The effect of fermentation depends on the type of organism used in the process and the type of fermentation carried out (Khodanazary et al., 2013). Solid-state fermentation (SSF) is a type of fermentation where the microorganisms are mixed with appropriate ingredients in a dry state and microbe ferments the plant matter in very low water activity or the absence of water completely (Papagianni et al., 2001; Pandey, 2003). SSF is not commonly used for microorganisms that require high water activity to develop or grow (Babu and Satyanarayana, 1996; Hölker and Lenz, 2005). There are few organisms that can be used in SSF due to the difficult fermenter-substrate complex. The complex is such that fungi must possess hyphae that can grow on the substrate particle and into the interparticle spaces locally fermenting the substrate (Santos et al., 2004). A few bacteria like *Clostridium thermocellum* (Chinn et al., 2007), *Bacillus subtilis* (Gupta et al., 2008; Mukherjee et al., 2008), *Streptomycyes*, *Cohnella* and *Cellulosimicrobium* (Opazo et al., 2012) have been used for SSF.

Unfermented BNM has been used as FM substitute in the diets of African catfish (Enyidi and Mgbenka, 2000; Enyidi, 2012; Enyidi et al., 2017). Bambara nut has been also used in feeding finisher broiler chicks (Ekenyem and Onyeagoro, 2006; Obih and Ekenyem, 2010). In all cases, BNM was a good diet component that produced higher weight gain compare with the control diets. Some effects of fermented BNM as feed ingredient have been examined by Nwanna et al. (2005), the authors did not specify the type of fermentation and organism used. Fermentation of BNM with *Rhizopus oligosporus* significantly reduced ANF like trypsin inhibitors from 3.18-0.49 mg/g after 72h (Olanipekun et al., 2015). Processing of bambara nut meal for 24 hours through soaking, boiling and fermentation also reduced ANF from about 7.3 mg g\(^{-1}\) to 4.2mg g\(^{-1}\) (Fadahunsi, 2009). However, Nwanna et al., (2005) noted some mineral composition of BNM increased after fermentation with fungi. Fermentation with *S. cerevisiae* had been noted to increase protein content of diets of fermented soy meal from 47% to 58% (Song et al., 2008).

Bambara nut (*Voandzeia subterranea*) is underutilized and neglected secondary food crop is grown all over sub-Saharan Africa (Karunaratne et al., 2008, Bhat and Karim, 2009). The crude protein content of bambara nut is about 24% (Dakora and Muofhe, 1995; Basu et al., 2007, Enyidi, 2012). It is cheap, abundant and easily accessible. Moderate protein content and low market price make BNM as a suitable alternative to both FM and soybean meal in the diets of African catfish (Enyidi et al., 2013).
This research is aimed at finding the growth and nutritional effects of feeding African catfish *C. gariepinus* with diets made from FM substituted with solid state fermented BNM for 56 days.

Materials and methods

Procurement and pre-treatment of bambara nut meal Grains of white bambara nut were purchased from open grains market at Enugu, Nigeria. The grains were sorted and milled using a locally made attrition mill. The meal was sieved with 0.1 mm sieve to obtain the initial white endosperm of bambara nut. The BNM was autoclaved at 100°C for 10 min, cooled and then stored for use during solid-state fermentation and feed production.

Solid state fermentation of bambara nut meal

Solid state fermentation of BNM was done per treatment feed. Approximately 1.56 kg of BNM was measured with an electronic weighing balance (Metler Toledo analytical balance) and was transferred into a plastic bowl. Common yeast *Saccharomyces cerevisiae* was purchased from a dealer in feed ingredient and bakery products within Enugu, Nigeria. The BNM was autoclaved at 100°C for 10 min, cooled and then stored for use during solid-state fermentation and feed production.

Monitoring of Saccharomyces cerevisiae

The growth and activity of the *S. cerevisiae* were monitored at the end of the second day of fermentation. Approximately, 10 g of the fermenting BNM was taken and placed in an 80 ml stomacher bag. Approximately, 45 ml of buffered peptone water (BPW) was added into the stomacher bag. The mixture of BNM and BPW were homogenized for 2 min and serial dilution with 0.2% peptone water was carried out in ten 100 mL test tubes. About 7 mL of the mixture was spread plated on nutrient agar. The plates were incubated at 32°C for 48 h and biochemical test was done for the *S. cerevisiae* growth. The fermentation process was arrested after four days. The fermented bambara nut meal (FBNM) were blended and stored in a cool dry place for 24 h, after which it was used for feed production. The solid-state fermentation and monitoring was carried out at the Microbiology Laboratory, Department of Microbiology Godfrey Okoye University Enugu, Enugu State, Nigeria.

Feed preparation

The principle of mixture design was employed in designing all the feed used in this experiment (Ruohonen *et al.*, 1992 Enyidi and Etim, Use of solid state fermented bambara nut meal as substitute of...).
There were two major protein sources in the diets [fishmeal (FM) and fermented bambara nut meal (FBNM)]. The five substitution percentage of FM: FBNM per treatment feed were F1: 50:5%, F2: 35:20%, F3: 20:35%, F4: 5:50% and F5: 0:56%. There was a control feed labelled as F6, which was a variant of F1 but its BNM was not fermented. F6, contained 50% FM and 5% raw BNM. There were similar inclusion levels of soybean meal and poultry by-products in all the feeds. The compositions of the experimental feeds are presented in Table 1. The diets were made to be isonitrogenous and isocaloric.

Known weights of all ingredients per treatment listed in Table 1 were measured using an electronic weighing balance, Huaying Electronic Scale (ACS-789), Yongkang Huaying weighing apparatus Co., Ltd. China. The weighed ingredients were mixed with an electric mixer using Kenwood chef mixer (Thorn Eni Harrant England). The ingredients were mixed till a homogenous blend was achieved. Approximately, 200 ml of water was added and then mixed to get the homogenous dough. The dough was preconditioned for 30 min and then pelleted using a 1.8 mm die. The feeds were dried at 45°C in an electric oven Samsung-5.8 Cu. Model: NE58F9710WS.

Experimental design
The experiment was carried out as a completely randomized design. There were three replicates aquarium per treatment feed. The fish were stocked at a density of 20 fish per aquarium making 60 fish per treatment feed. The feeds were labelled as F1 to F5 for the fermented diets while there was a control diet made without fermented bambaranut meal labelled as F6.

Proximate analysis
Crude protein was analyzed by the Kjeldahl method from dried fish samples. Analyses were made using a Tecator Kjeltec model 1002 system using block digestion and steam distillation and crude protein were calculated as %N x 6.25. Amino acid levels were measured according to the methods of the European Commission (1998). The total lipids of fish muscles were measured by chloroform-methanol extraction at a ratio of 2:1. The lipid extraction followed the method described by Enyidi et al. (2017). Total lipid was calculated as the weight difference in non-extracted and extracted muscle samples (Parrish, 1999; Kainz et al., 2004). The moisture content of the feeds was determined by oven drying feed samples at 105°C. Ash content was determined by incineration samples in a muffle furnace at 550°C for 24 hrs. The ash content was calculated as the weight of ash/weight of sample x 100.

Experimental fish
Fingerlings of African catfish C. gariepinus with an average weight of 5.08 g were obtained from a commercial fish farm in Umuahia. The fingerlings were transported in airbags to the wet laboratory of Department of Fisheries and Aquatic Resources.
Management Michael Okpara University of Agriculture Umudike, Abia State, Nigeria. The fish were acclimatized for 7 days, during which time they were fed with 32% protein diet. The catfish were distributed into three replicates aquaria per treatment feed. The initial weights of the fish were recorded and subsequent weight increases were taken every two weeks. The catfish were deprived of feed 15 hours prior to start of weight taking experiment. The aquaria were subjected to 12D:12L photoperiod. The water temperature was 28.5±0.09 °C, the phosphorus content of the aquarium water was 0.09 mg L\(^{-1}\), dissolved oxygen content was 5.15±1.09 mg L\(^{-1}\) (YSI oxygen meter model 550A, YSI Inc. Yellow Springs, Ohio, USA) and pH was 7.35±0.77. Also the concentrations of nitrate and ammonia were 128.33±1.02 m g \(^{-1}\) and 0.7±0.6 mg L\(^{-1}\), respectively (Tetra ammonia kit, Malvern, PA, USA).

Table 1: Feed composition and proximate analysis of experimental feeds varying in fishmeal and solid state fermented fermented bambara nut meal used in feeding African catfish for 56 days.

<table>
<thead>
<tr>
<th>Feed</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6/NFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish meal</td>
<td>50</td>
<td>35</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>FBNM</td>
<td>5</td>
<td>20</td>
<td>35</td>
<td>50</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Poultry meal</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
</tr>
<tr>
<td>Bone meal</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Vit. & Premix</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Vit C</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Proximate analysis of the experimental feed

<table>
<thead>
<tr>
<th></th>
<th>FBNM</th>
<th>BNM</th>
<th>FM</th>
<th>Recommended.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>32.77</td>
<td>31.56</td>
<td>31.38</td>
<td>33.78</td>
</tr>
<tr>
<td>Crude lipid</td>
<td>3.86</td>
<td>4.10</td>
<td>3.81</td>
<td>3.84</td>
</tr>
<tr>
<td>Starch</td>
<td>55.32</td>
<td>55.51</td>
<td>53.62</td>
<td>53.08</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>5.27</td>
<td>5.73</td>
<td>6.17</td>
<td>6.2</td>
</tr>
<tr>
<td>Ash</td>
<td>4.78</td>
<td>5.17</td>
<td>5.4</td>
<td>4.79</td>
</tr>
<tr>
<td>Moisture</td>
<td>8.92</td>
<td>8.84</td>
<td>9.63</td>
<td>8.67</td>
</tr>
<tr>
<td>Dry matter</td>
<td>91.13</td>
<td>91.16</td>
<td>90.38</td>
<td>91.13</td>
</tr>
</tbody>
</table>

\(^{F\text{NBM}}\) stands for fermented bambara nut meal, \(\text{SBM}\) is soybean meal, \(\text{PBP}\) is poultry by-products or Poultry slaughter waste.

Table 2: Proximate analysis of the amino acid contents of bambara nut meal and fishmeal and the recommended values for catfish.

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>BNM</th>
<th>FBNM</th>
<th>FM</th>
<th>Recommended.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>19.0</td>
<td>24.4</td>
<td>48.3</td>
<td>13.4</td>
</tr>
<tr>
<td>Hist</td>
<td>6.7</td>
<td>7.3</td>
<td>18.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Ile</td>
<td>9.4</td>
<td>9.3</td>
<td>38.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Leu</td>
<td>19.4</td>
<td>22.4</td>
<td>62.7</td>
<td>10.9</td>
</tr>
<tr>
<td>Lys</td>
<td>11.7</td>
<td>16.8</td>
<td>52.2</td>
<td>15.9</td>
</tr>
<tr>
<td>Met</td>
<td>4.2</td>
<td>6.4</td>
<td>20.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Cys</td>
<td>3.0</td>
<td>3.1</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>12.7</td>
<td>10.4</td>
<td>27.1</td>
<td>15.6</td>
</tr>
<tr>
<td>Tyr</td>
<td>11.5</td>
<td>13.9</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>8.2</td>
<td>8.6</td>
<td>29.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Val</td>
<td>9.6</td>
<td>11.3</td>
<td>43.0</td>
<td>9.4</td>
</tr>
</tbody>
</table>

The values of the amino acids are as fed basis in g kg\(^{-1}\): Arg (arginine), His (histidine), Ile (isoleucine), Leu (leucine), Lys (lysine), Met (methionine), Cys (cystine), Phe (phenylalanine), Tyr (tyrosine), Thr (threonine), Val (valine). BNM (bambara nut meal), SM (soybean meal), FM (fish meal); \(^{a}\) corresponds to methionine + cystine, \(^{b}\) corresponds to phenylalanine + tyrosine. Recommended values are g kg\(^{-1}\) of dietary protein (NRC, 1993).
Calculation and statistical analysis

The following calculations were made for each aquarium, which served as the observational unit in the experiment:

Specific growth rate (SGR, % day$^{-1}$) was calculated as $100 \times (\ln w_2 - \ln w_1) \times t^{-1}$, where w_1 and w_2 were average weights in g at the start and the end of the experiment, respectively, and t was the length of the experiment in days.

Food conversion ratio (FCR) of the catfish was calculated as $(\text{food consumed in g}) \times (\text{change in tank biomass in g})^{-1}$. Hepatosomatic index (HSI) was measured as $100 \times \text{liver weight (g)} \times \text{fish weight (g)}^{-1}$. Also, peritoneal fat somatic index (FSI) was calculated as $100 \times \text{intraperitoneal fat (g)} \times \text{fish weight (g)}^{-1}$.

The other growth parameters were measured as follows:

- Survival = $100 \times \text{final number of individuals} \times \text{initial number of individuals}^{-1}$.
- Daily feed intake (DFI) (g$^{-1}$ fish on as fed basis) = Cumulative feed intake – rejects / number of fish.
- Protein efficiency ratio (PER) = $(w_2 - w_1)$ (g) x protein fed (g)$^{-1}$.
- Protein retention = $100 \times (\text{final protein content of fish in g} - \text{initial protein content of fish in g}) \times \text{protein fed (g)}^{-1}$.
- Cost (Naira kg fish produced$^{-1}$) = Food conversion ratio x feed cost (Naira kg$^{-1}$) where bambara nut costs ca. 1000.00 kg$^{-1}$, and fishmeal 3000 kg$^{-1}$.
- Cost per unit protein is = Cost of making (kg) of diet x protein$^{-1}$.

Results were analyzed using one way ANOVA and least significant difference (LSD) 0.05 was used in separating possible differences of treatment means. The statistical package used for analyses was SPSS 14.0.

Feeding and catfish culture management

The fish were fed to satiation three times daily. The period of feeding was in the morning 8 am, afternoon 1-2:30 pm and evening 6-7 pm. Feeding was carefully done to avoid over feeding of the fish. The weights of the feed administered to the fish were recorded and the weights of uneaten feed were also recorded. Prior to feeding the fish, the aquariums were usually washed and uneaten food and faecal materials were removed. In cleaning aquarium, $\frac{3}{4}$ of the water was usually removed and replaced to avoid stressing the fish. The water supply to the aquarium was from university borehole water. The water was passed through a filter before being pumped into the aquariums. The physico-chemical parameters of the aquarium water were analyzed every other day and the averages were recorded. The results of the physico-chemical parameters analyses are illustrated in table 2. The catfish weights increases were measured every 2 weeks. Before weighing the fish they were denied feed for 15 hours to evacuate their stomach of the feed and faeces. Fish were measured in batches according to treatment feed and replicates.

Results

The catfish were quick in accepting experimental diets and grew with optimal SGR of 7.82 ± 0.25 % day$^{-1}$.
achieved by those fed with feed F1. There was a significant difference ($p<0.05$) between the SGR of the catfish fed with F1, 7.82±0.25 % day$^{-1}$ and those fed with F2, 7.26±0.18 % day$^{-1}$. The catfish fed with control diet (non fermented BNM) did equally well with a SGR of 7.35 ± 0.24% day$^{-1}$. There were no significant differences between SGR of the catfish fed with either feed F2 or those of control non fermented BNM diet ($p>0.05$) (Table 3).

Alternating the percentage FM: FBNM inclusion levels of F2 as in F3, reduced the SGR of the catfish from 7.26±0.18 % day$^{-1}$ of F2 to 6.77±0.38 % day$^{-1}$ of F3. Feed made from complete supplementation of fishmeal with fermented bambara nut meal Feed 4 (F4), produced the least SGR 4.88±0.11 % day$^{-1}$. It seems that SGR of the catfish was decreasing with increasing inclusion of FBNM (Fig. 1). There was negative correlation between the catfish SGR and inclusion of FBNM ($R^2=0.931$, Fig.1).

<table>
<thead>
<tr>
<th>Feed</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6nfm</th>
<th>F7 comm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial av wt</td>
<td>5.04±0.07a</td>
<td>5.48±0.05b</td>
<td>5.37±0.02bc</td>
<td>4.89±0.03ad</td>
<td>4.83±0.04be</td>
<td>5.32±0.06bc</td>
<td>4.89±0.02cde</td>
</tr>
<tr>
<td>Final Av wt</td>
<td>85.16±3.3a</td>
<td>76.61±3.1b</td>
<td>56.52±2.1c</td>
<td>27.05±0.3d</td>
<td>21.79±0.32e</td>
<td>76.19±1.3a</td>
<td>67.76±0.56c</td>
</tr>
<tr>
<td>Av wt gain</td>
<td>80.12±0.06a</td>
<td>71.13±0.03b</td>
<td>51.15±0.34c</td>
<td>22.16±0.25d</td>
<td>16.96±0.54e</td>
<td>70.87±0.23a</td>
<td>62.87±0.33c</td>
</tr>
<tr>
<td>FCR</td>
<td>1.24±0.19a</td>
<td>1.34±0.06b</td>
<td>1.51±0.16c</td>
<td>2.03±0.19d</td>
<td>2.50±0.08e</td>
<td>1.52±0.08a</td>
<td>1.20±0.90c</td>
</tr>
<tr>
<td>SGR</td>
<td>7.82±0.25a</td>
<td>7.26±0.18b</td>
<td>6.77±0.38c</td>
<td>5.34±0.19d</td>
<td>4.88±0.11e</td>
<td>7.35±0.24a</td>
<td>7.14±0.07c</td>
</tr>
<tr>
<td>PER</td>
<td>1.70±0.11a</td>
<td>1.57±0.18b</td>
<td>1.10±0.06c</td>
<td>0.50±0.12d</td>
<td>0.37±0.03e</td>
<td>1.66±0.23a</td>
<td>1.50±0.75c</td>
</tr>
<tr>
<td>HSI</td>
<td>0.41±0.1a</td>
<td>0.47±0.15b</td>
<td>0.473±1.00c</td>
<td>0.746±1.93d</td>
<td>1.089±1.02e</td>
<td>0.394±0.22a</td>
<td>1.180±1.34c</td>
</tr>
<tr>
<td>GSI</td>
<td>0.09±0.07a</td>
<td>0.65±0.34b</td>
<td>0.17±0.54c</td>
<td>0.20±0.76d</td>
<td>0.13±0.43e</td>
<td>0.10±0.54a</td>
<td>0.20±0.32c</td>
</tr>
<tr>
<td>PCR</td>
<td>0.28±0.23a</td>
<td>0.28±0.34b</td>
<td>0.32±0.03c</td>
<td>0.48±0.21d</td>
<td>0.54±0.35e</td>
<td>0.22±0.67a</td>
<td>n/a</td>
</tr>
<tr>
<td>Daily feed int.</td>
<td>15.78±0.04a</td>
<td>15.05±0.07b</td>
<td>11.38±0.09c</td>
<td>7.08±0.05d</td>
<td>6.16±0.11e</td>
<td>6.11±0.32a</td>
<td>11.52±0.41c</td>
</tr>
<tr>
<td>Costs/kg ($)</td>
<td>570.30±0.04a</td>
<td>342.7±0.50b</td>
<td>358.6±0.01c</td>
<td>374.5±0.30d</td>
<td>381.3±0.02e</td>
<td>326.8±0.01a</td>
<td>1200±0.05c</td>
</tr>
<tr>
<td>Cost/U protein</td>
<td>12.09±0.07a</td>
<td>7.50±0.08b</td>
<td>7.70±0.04c</td>
<td>8.44±0.03d</td>
<td>8.27±0.01e</td>
<td>7.66±0.08a</td>
<td>28.56±0.07c</td>
</tr>
</tbody>
</table>

Initial av wt=initial average weight (g), final av wt=final average weight (g), Av wt gain=average weight gain, FCR=food conversion ratio, SGR=specific growth rate % day$^{-1}$. PER =protein efficiency ratio. HSI=hepatosomatic index, GSI=gonadosomatic index, PCR=protein conversion ratio. Daily feed int.=daily feed intake. Costs kg$^{-1}$ ($) =cost of making a kg of the feed in Nigeria Naira, 1 USD ($) equals 450 Nigerian Naira, Cost/U.protein=cost per unit protein. The formulas for deriving these parameters are written on page. Means not followed by same superscript are significantly different ($p<0.05$).
The FCR of the catfish were lowest for those fed with F1 and F2 (1.24±0.19 and 1.34±0.06 respectively). The control diet, (non fermented BNM) had higher FCR than the catfish fed with F1 (p<0.05). The catfish FCR was similar for those fed with 20% FBNM diet F2 and 5% non fermented BNM diet (control) (p>0.05). Total substitution of FM with FBNM increased FCR from 2.03±0.19 of catfish fed with F4 to 2.50±0.08 of F5 (Table 3). There was however a significant difference (p<0.05) in the FCR of catfish fed with feed 4 and feed 5. Generally, it seems that increasing FBNM inclusion increases FCR of the catfish. The catfish FCR was positively correlated to the increasing inclusion of FBNM, (R2 =0.917, Fig. 2).
The final average weight gain of the catfish was highest for the catfish fed with F1 (85.16±4.3 g) followed by that of catfish fed with F2 (76.61±3.1 g) and those of control diet made from non fermented BNM (70.87±0.23 g). There was no significant difference (p>0.05) in the final weight of catfish fed with F2 (20% FBNM diet) and control (5% non fermented BNM). Alternating the percentage inclusions of FM: FBNM in F2 and F3, reduced the final weight of the catfish to 56.52±2.1 g from 76.61±3.1 g of F2. The final average weight of the catfish was negatively correlated with the increasing inclusion of FBNM (R²=0.956, Fig. 3). The catfish fed with diets F1 had significantly higher weight gain (80.12±0.06 g) than those fed with F2 (71.13±0.03 g) and the control diet (70.87±0.23 g) (p<0.05). The complete substitution of FM with FBNM as in F5, produced the lowest AWG of 16.96 ± 0.54 g. Similarly alternating the FM: FBNM ratio of F2 and F3 reduced AWG from 71.13±0.03 g of those fed F2, to 51.15±0.34 g of the catfish fed with F3. The AWG of catfish fed with F2 was significantly different from those fed with F3 (p<0.05). The catfish AWG was negatively correlated to the increasing inclusion of fermented FBNM (R²=0.967 Fig. 4).

Figure 3: The final average weight of African catfish *Clarias gariepinus* fed diets varying solid state fermented bambara nut meal with fishmeal for 56 days.

Figure 4. The average weight gain of African catfish *Clarias gariepinus* fed with diets varying solid state fermented bambara nut meal with fishmeal for 56 days.
The catfish PER were best but not significantly different ($p>0.05$) for the fish fed with feed F1 (1.70±0.11), F2 (1.57±0.18) and the control unfermented diet (1.66±0.23). Alternation of the FM: FBNM ratio of the diets F2 and F3 reduced PER from 1.57±0.18 of feed 2 to 1.10±0.06 of feed 3. The lowest PER was recorded with the catfish fed with total substitution of FM as in F5 (0.37±0.03).

There was no significant difference between the PER of catfish fed diets substituting FM with either fermented or non fermented bambara nut meal (Table 3). The PER of the catfish was negatively correlated to increasing inclusion of FBNM ($R^2=0.958$, Fig. 5). The PER of the catfish was also positively correlated to the catfish SGR ($R^2=0.954$, Fig. 6).

![Figure 5: The effects of feeds made from solid state fermented bambara nut meal and used as substitute for fishmeal on the catfish protein efficiency ratio after 56 days feeding period.](image1)

![Figure 6: Relationship of protein efficiency ratio and specific growth rate of African catfish fed diets varying in inclusion levels of FM and BNM (as illustrated in Table 1).](image2)

The catfish fed with feed 1 had the lowest protein conversion ratio of 0.28±0.23. This means that it will take 0.28±0.23 of the feed to make 1 g of the
protein of the fish. On the other hand, it will take 0.54±0.35 of the feed 5 F5 to make a 1 g of the fish protein. There was no significant difference (p>0.05) in the PCR of catfish fed with F2, F3, and the control diet (non fermented BNM diet).

The cost per unit protein measures the cost of producing 1 kg protein of the fish. The diet that produced the highest cost per unit protein in the catfish was feed F1, USD 0.031 (₦12.09±0.07). The cost per unit protein of the catfish fed with F1 was significantly different from that of all other feeds (p<0.05). The cost per unit protein of catfish fed with F2, F3 and the F6, control diet were similar (p>0.05). Similarly, there was difference (p>0.05) in the cost per unit protein of catfish fed with 5% fishmeal diets USD 0.022 (₦8.44±0.03) and 0% fish meal diets USD 0.021 (₦8.27±0.01).

The catfish showed gonadosomatic index which was highest for those fed with F2. The GSI of catfish fed with F2 was significantly (p<0.05) higher than that of catfish fed with F1 (GSI, 0.09). There was higher GSI for the catfish fed raw BNM than the fermented at their inclusion level (p<0.05). Similarly, the catfish fed with F3, F4 and F5 had similar GSI (p>0.05). The visceral fat somatic index measures the quantity of fats deposited in the visceral cavity of the fish against the body weight. The highest quantity of visceral fat was taken from catfish fed diets with complete substitution of FM (F5). The VSI was also high for the catfish fed 5% FM diet (F4) with VSI 1.59%. There was no significant difference (p>0.05) between the VSI of catfish fed with the commercial diet and those on 5% FM diets. The catfish VSI was positively correlated to increasing FBNM ($R^2=0.528$, Fig. 7).

![Figure 7](https://example.com/figure7.png)

Figure 7: The effects of increasing inclusions of solid state fermented bambarabut meal on the visceral fat somatic index of African catfish fed diets substituting fishmeal with BNM.
Waste production ratio was lowest for the catfish fed with F1 (WPR, 0.25±0.08). This was significantly lower than all other WPR of the treatment feeds (p<0.05). Alternating the substitution of FM with FBNM as in F3 elevated the WPR from 0.35±0.66 in F2, to 0.48 ± 0.11 in F3. However there was no differences in the waste production ratio of F2 and F3. Similarly, complete substitution of FM with FBNM elevated the waste production ratio to 1.33±0.65. The commercial diet had the least waste production ratio of 0.10±0.08.

The cost of making the diets was highest for feed 1, USD 1.46 (₦570.3, at ₦ 390 USD⁻¹). The cost of making F1 was significantly higher (p<0.05) than cost of making F2, USD 0.87 (₦ 342.7 at ₦ 390 USD⁻¹). However, cost of producing the feed increased by alternating the ingredients of F2 to produce feed 3 to costing USD 0.91 (₦ 358.6 at 390 USD⁻¹).

Cost per unit protein presents a resolution of cost of producing 1 g of the fish protein. Feed F1 had the highest cost per unit protein of USD 0.031 (₦ 12.09±0.07). Cost per unit protein was the same (p>0.05) for F2 USD 0.019 (₦7.50±0.08) and F3, USD 0.019 (₦ 7.70±0.04). Cost per unit protein increased as more fishmeal are replaced peaking at USD 0.022 (₦ 8.44±0.03) for F4 and USD 0.021 (₦ 8.27±0.01) for F5.

Discussion

Based on the results, use of solid state fermented BNM as FM substitute was beneficial in the diets of African catfish. The growth rate of the catfish was significantly improved by incorporation of FBNM instead of the raw meal. Although the incorporation of non fermented or raw BNM also produced good growth rate, the fermented variant was better. A consideration of the SGR of F1 and control F6 shows a difference in performances due to the use of FBNM. However, when FBNM was used alone in 100% substitution of FM the difference was minimal. Fermentation of BNM with yeast has been previously reported to increase protein content (Lio and Wang, 2012). There was high SGR in all treatment diets made from solid state fermented BNM. Previously, Enyidi et al. (2017) utilized raw BNM in diets of fingerling African catfish and had maximum SGR of 5.5% day⁻¹. This record was surpassed in this research using FBNM in feed production with maximum SGR of 7.82±0.25% day⁻¹. Higher SGR and weight gain were recorded for Indian shrimp Fenneropeneaus indicus fed with diets contained fermented prawn shell (Amar et al., 2006).

The explanation could be that fermentation conditioned the ingredients positively to be utilised by the fish. The feed intake was also improved by the high inclusion of FM which provided much needed amino acids. There was a positive correlation between FM and feed intake (R²=0.952). In Table 2 we noted improved amino acid content of FBNM. It seems that the FBNM together with the FM could have contributed to better utilization of the diets than the raw
BNM. In a previous experiment fermentation of bambara nut meal with a mixture of *Rhizopus oligosporous* and *R. nigricans* increased crude protein from 18.66 to 22.60% (Olanipekun et al., 2012). Fermentation of soybean meal with *S. cerevisiae* had protein content increased from 47% to 58% (Omafuvbe et al., 2002; Song et al., 2008). The increased protein content could have been due to the fungal action in breaking down the proteins to simpler forms making them easily utilized by the catfish by increase proteolytic enzyme production from the microflora (Heseltine, 1983).

Fermentation reduces anti nutritional factors in plant diets. This could also have accounted for better SGR of the catfish in this paper. In previous works, fermentation had been noted to reduce the anti nutritional factors that interact with nutrient utilization such as phytic acid and other anti nutritional factors (Egounlety and Aworth, 2003; Song et al., 2008; Lio and Wang, 2012). Fermentation of bambara nut meal has been known to reduce anti nutritional factors like tannins (Obizoba and Egbuna, 1992; Nwanna et al., 2005, Fadahunsi, 2009; Olanipekun et al., 2015). Bambara nut has a lower content of phytic acid (0.84%) (Enyidi and Mgbenka, 2015) compared to soybean 1.4% (Liu, 1997). Some of the ANF in the feed may be because of the non starch polysaccharides that are non digestible by the fish. It seems that during fermentation microorganisms digest the carbohydrates in bambara nut meal while using it for their own growth. Consequently, the decreased dry matter and elevated microorganism’s weight ratio causes the increased protein content (Hong et al., 2004; Chen et al., 2010).

The weight gain of the catfish was also affected by diets. Although the final average weight of the catfish was best at highest FM inclusion 50% for the catfish diet F1, alternating FBNM with unfermented BNM in diet F6, significantly reduced the weight gain. This goes to show the importance of using FBNM instead of unfermented in the diets of African catfish. However weight gain reduced with increasing substitution of FM. There was a major difference in the catfish weight gain when FBNM was substituted for FM than when raw bambara nut was used. In a previous research, increased weight gain was noted when fermented sesame seed was used in substituting fishmeal in the diets of *Labeo rohita* (Mukhopadhyay and Ray, 1999). Fermentation causes elevation of vitamins including riboflavin, niacin, vitamin B6 and β-carotene. This elevation is due to processing of the carbohydrates by the fermenting microorganism. This may be among the reason for better performance of fish fed with fermented feed than the non fermented control diet. It seems that nutrient interactions with FM and other dietary components, amino acids and carbohydrates broken down during fermentation, could have accounted for the weight gain differences between using FBNM and non fermented BNM.

Fermentation also improved the FCR when FBNM was used in substitution of FM. In substitution of FM with
FBNM 5% BNM substitution level compared favorably with 20% BNM. The reason for similar FCR when 5% BNM and 20% BNM were used in substituting FM in the diets of *C. gariepinus* could be because of the fermentation. The performances of the catfish on the FBNM substitute could also be attributed to increasing in the mineral content of the BNM after fermentation. In previous work, Nwanna et al. (2005) noted an increase in mineral content of yeast fermented fermentation BNM. Moreover, fermentation with yeast removed hard to digest carbohydrates like galactose, polysaccharides and α, α tetra-halose (Yoon *et al*., 2003), therefore making the feed easily utilizable by the catfish with a low FCR. Alternation of the feed mixes of F2 and F3 increased FCR of the catfish. The increase in FCR of F3 could be due to the higher starch content of F3 compared to F2.

The high cost of fishmeal could make utilization of diet F1 more costly than the F2. This makes it cost effective to use F2, considering also the cost of production per kg of feed USD 1.46, (₦570.3) for F1 and USD 0.88, (₦342.7) for F2. Also cost per unit protein is favorable to F2 as against use of F1. Cost per unit protein of using F1 was USD 0.031 (₦12.09) for F1 and USD 0.019 (₦7.50) for F2, respectively. The protein efficiency ratio (PER) of the catfish was negatively correlated with increasing BNM and increasing (R² 0.958). Conversely, PER was positively correlated to SGR (R² 0.954). This could be because the growth of the fish is based on accretion of more biomass which is protein based. Consequently, the more efficient protein the higher growth rate. Increasing inclusion of FBNM may not have increased PER, but increased the visceral somatic fat. Its seems that the catfish was able to utilize the FBNM in production of more visceral fat. There was positive correlation between the visceral fat and increasing inclusion of FBNM (R²=0.528). It seems that dietary carbohydrate increases accumulation of body fat. In previous researches, Lin and Shiau (1995) and Hemre *et al*. (2002) noted that dietary carbohydrate increases the efficiency of lipid biosynthesis from dietary lipid. BNM contains small quantity of lipid, but predominantly unsaturated fatty acids like oleic, palmitoleic and caprylic acid.

The carbohydrate content of BNM seems to have affected the hepatosomatic index (HSI) of the catfish. Increasing BNM could have increased carbohydrate in feed and more lipigenic activity of liver (Walton and Cowey, 1982; Hemre and Storebakken, 2000; Hemre *et al*., 2002). The HSI of the catfish increased with increasing BNM inclusion. This could be due to the fact that the liver acts on the carbohydrate breaking it down to fatty acids and glycerol, therefore affecting the HSI. Feed acceptance was however increased more by the inclusion of fishmeal than BNM. The feed did not seem to have any definite effects on the GSI. However, this may be because of the duration of the experiment. However, the catfish fed with the fermented diets and those on
non fermented had similar GSI. Further rearing of the catfish on the diets may change the GSI as the catfish develops.

Solid state fermentation of BNM is a significant means of improving nutritional values of feed stuff. Growth and nutritional performance of the African catfish can be enhanced by utilising solid state fermented ingredients in their diet formulation. Solid state fermentation seems to reduce ANF and improving the amino acids profile of the ingredient thereby improving food conversion ratio and supporting fast growth. The technique for solid-state fermentation is relatively easy and can be adapted especially by farmers in sub-Saharan Africa where farms made feed are regularly used to arguments costly imported feed. The reduction in usage of fishmeal can cost saving judging from costs of using F1, F2 and F3 feeds. Moreover, the needs for incorporation of exogenous enzymes like phytase (which is not easy to buy in the developing nations) in feeds can be curtailed using SSF ingredients.

References

Australasian Journal of Animal Sciences, 23, 1386–1398

Journal of Applied Science and Technology, 5(6), 526-537. DOI: 10.9734/BJAST/2015/12886

Committee for Food Safety pp. 1-173.

different dietary carbohydrates in juvenile tilapia (*Oreochromis niloticus × O. aureus*). *Fish Physiology and Biochemistry*, 14, 165-170

Robinson, E.D. and Li, M., 1996. A practical guide to nutrition, feeds, and feeding of catfish. Bulletin 1041 -- March Delta Branch Experiment Station Stoneville, Mississippi USA. Pg1-71

Enyidi and Etim, 2002. Use of solid state fermented bambara nut meal as substitute of…

Science and Biotechnology, 6(13), 2-7

