Growth, mortality and spawning season of the spangled emperor (*Lethrinus nebulosus* Forsskal, 1775) in coastal waters of Hormozgan Province in the Persian Gulf and Oman Sea

Taghavi Motlagh S.A.1; Vahabnezhad A.2; Seyfabadi S.J.2; Ghodrati Shojaei M.3 and Hakimelahi M.4

Received: June 2009 Accepted: September 2009

Abstract

The population parameters and spawning season of the Spangeld emperor (*Lethrinus nebulosus*) were studied in coastal waters of Hormouzgan province. The monthly calculated mean values of gonadosomatic index (GSI) of females were indicate to increase from February, reach the highest in March and decline in June. The spawning season peak of *L. nebulosus* occurred in March. The Von Bertalanffy growth parameters, *L*∞, *K* and *t*0 were estimated as, 67.2cm, 0.16.year⁻¹ and -1.161 year, respectively. The relationship between weight and length (Fork Length) can be expressed as *W*=0.051 *L*².7²², which indicates that Spangled Emperor has negative allometric growth. Using length converted catch curve, total mortality (*Z*) was estimated as 1.13 year⁻¹ and natural mortality was estimated using Pauly’s equation, as 0.57 per year. Finally, the fishing mortality (*F*) was 0.56, which gives an exploitation rate (*E*) of 0.50.

Keywords: *Lethrinus nebulosus*, Spawning, Growth parameters, Spawning, Mortality rates, Hormouzgan Province

1- Iranian Fisheries Research Organization, P.O.Box: 14155-6116 Tehran, Iran
2- Faculty of Marine Science and Natural Resources, Tarbiat Modarres University, P.O.Box: 14115-356 Noor, Iran
3- Persian Gulf and Oman Sea Ecologiy Research Center, P.O.Box: 1597, Bandar Abbas, Iran
4- Hormouzgan University, P.O.Box: 3995, Bandar Abbas, Iran
Corresponding author's email: S_taghvimotlagh@hotmail.com
Introduction

Fisheries management relies on understanding the fish population’s dynamics while determining the biological parameters, including size at maturity, duration of the spawning season, as well as growth and mortality estimates (Tracey *et al.*, 2006).

Fishes of the family Lethrinidae are abundant in the coastal part of tropical and subtropical Indo-Pacific. *Lethrinus nebulosus* (Forsskål, 1775), is distributed throughout the Indo-West Pacific from the Red Sea and East Africa to southern Japan and Samoa (Young & Martin, 1982). There are about 20 species of this family (Lethrinidae) in the FAO area (Fischer & Bianchi, 1984). *Lethrinus nebulosus* is a large tropical species reaching 80.0cm total length and 8.4kg total weight (Randall, 1995). Studies on the biological aspects of the *L. nebulosus* including age, growth and mortality as well as food and feeding habits have been carried out in the Pacific Ocean, Red Sea and the Persian Gulf (Kuo & Lee, 1986; Morales-Nin, 1988; Rathacharen *et al.*, 1995; Al Sakaff & Esseen, 1999; Al-Sayes *et al.*, 1988; Ibrahim *et al.*, 1988; Ezzat *et al.*, 1992; Grandcourt *et al.*, 2006).

Along the 4 Iranian coastal provinces in south part (from east to west) Sistan and Baluchestan, Hormouzgan, Bushehr and Khouzestan, spangled emperor is targeted by local fishers who used different fishing methods such as traps (locally named Gargoor and Gillnets). Owning to its high value and demand *L. nebulosus* has become a target species for a part of fishermen in southern waters of Iran especially for Hormozgan province fishermen. Landing data from 1997 to 2007 shows that more than 60% of the *L. nebulosus* catches were landed in the Hormozgan province and 21% in Bushehr (Table 1). The landing from southern waters of Iran (Persian Gulf and Oman Sea) has slightly increasing trend from 1997 onwards ($r = 0/8$) (Fig. 1).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Khozestan</td>
<td>14</td>
<td>31</td>
<td>60</td>
<td>35</td>
<td>35</td>
<td>91</td>
<td>126</td>
<td>329</td>
<td>162</td>
<td>129</td>
<td>55</td>
</tr>
<tr>
<td>Busher</td>
<td>194</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>219</td>
<td>356</td>
<td>290</td>
<td>397</td>
<td>343</td>
<td>368</td>
<td>264</td>
</tr>
<tr>
<td>Hormozgan</td>
<td>461</td>
<td>589</td>
<td>340</td>
<td>395</td>
<td>462</td>
<td>716</td>
<td>816</td>
<td>1437</td>
<td>1260</td>
<td>1315</td>
<td>1089</td>
</tr>
<tr>
<td>Sistan & Bluchestan</td>
<td>100</td>
<td>176</td>
<td>170</td>
<td>85</td>
<td>156</td>
<td>106</td>
<td>115</td>
<td>149</td>
<td>33</td>
<td>267</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>769</td>
<td>986</td>
<td>770</td>
<td>725</td>
<td>872</td>
<td>1269</td>
<td>1347</td>
<td>2312</td>
<td>1798</td>
<td>2079</td>
<td>1480</td>
</tr>
</tbody>
</table>
The present study was undertaken to evaluate the spawning season and growth characteristics of this species in the Iranian waters, using FiSAT II on size composite data from 2007 to 2008. The objectives of this study are therefore to answer some of the questions pertaining to growth, reproductive activity, mortality and exploitation rate of L. nebulosus in Hormozgan province waters.

Materials and methods
Monthly samples of L. nebulosus (September 2007 to August 2008) were collected from landing sites (Jask, Kong and Gheshm) of the Hormouzgan province. The study areas are shown in Fig. 2.

The specimens were collected directly and regularly from small scale fishermen. The fork length of 1800 and weight of 300 specimens were measured during study period. Fork length measured to the nearest cm for all fishes and total weight (TW) of individual fishes to the nearest 0.01kg was measured. Each month 30 individuals were sampled and transferred to the laboratory for reproduction studies. The gonad weight in grams was recorded. The gonadosomatic index (GSI) was calculated monthly by the following equation (Biawas, 1993):

\[\text{GSI} = \left(\frac{\text{gonad weight}}{\text{fish weight without gonad}} \right) \times 100 \]

The time of spawning for L. nebulosus in Hormozgan province waters (Persian Gulf and Sea of Oman) is estimated by the relative size or weight of gonads over the one year study period.

The length and weight relationship was determined by the equation \(W = aL^b \), in order to verify if calculated \(b \) was significantly different from 3, the Student’s t-test was employed (Zar, 1996).
The catch data, available from Department of Fisheries Statistics (Iranian Fisheries Organization, 2008), were also utilized. Length measurements of monthly samples of *L. nebulosus* were pooled and grouped by 1 cm interval for purpose of growth estimation.

Bhattacharia’s method was used to identify the mean size of different cohorts (Pauly & Caddy, 1985; Sparre & Venema, 1992). The mean size, were then used for the estimation of Von Bertalanffy growth parameters, L_∞ and K using modal progression analysis method.

The parameter t_0 of the growth equation was estimated using the following equation (Pauly, 1980):

$$\log(t_0) = -0.3922 - 0.2752 \log(L_\infty) - 1.038 \log(K).$$

In order to facilitate the comparison of the results with those of other studies, growth performance index (Φ) was estimated by the following equation (Pauly & Munro, 1984):

$$\Phi = \log(K) + 2 \log(L_\infty).$$

The total mortality coefficient Z was estimated using the linear length-converted catch curve method, using the final estimates of L_∞ and k and the length distribution data (Gayanilo & Pauly, 1997). The natural mortality M was estimated using (Pauly, 1980) empirical equation relating M, L_∞, k and T.

$$\log(M) = -0.0066 - 0.279 \log(L_\infty) + 0.6543 \log(K) + 0.4634 \log(T).$$

The mean annual environment temperature (T) used in the estimation was 26.5°C (courtesy of the Iran Environment Public Authority). Fishing mortality rate (F) was calculated as (Sparre & Venema, 1992):

$$F = Z - M.$$

The exploitation rate (E), was computed by dividing F by Z (Pauly, 1983).

The computer software FiSAT2 (www.fao.org/fi) and Ms Excel were used for the analysis and estimation of the above mentioned biological parameters.

Results
The monthly mean values of gonadosomatic (GSI) indexes for females are presented in Figure 3, which shows that the monthly mean value of GSI starts to increase from February, reach the highest in March and decline in June. It could be concluded that there was one peak of spawning period for *L. nebulosus* in March.

The length frequency (FL) of *L. nebulosus* ranged from 17 to 64.5 cm, the size of 39-40 cm was predominated (Fig. 4).

The length-weight relationship of the form $W = a \cdot L^b$ was estimated for both sex together (Fig. 5), and the parameters were estimated as:

- $a = 0.0518$ and $b = 2.722$, $r = 0.987$;

Verifying calculated b with 3, using Student’s t-test, there was significant difference between calculated b and 3 ($P<0.05$).

![Figure 3: Seasonal variation of the gonadosomatic index for female *L. nebulosus* (2007-08)](image1)

![Figure 4: Length frequency distribution for *L. nebulosus* in the Hormozgan province in the Persian Gulf and Oman Sea](image2)

Figure 4: Length frequency distribution for *L. nebulosus* in the Hormozgan province in the Persian Gulf and Oman Sea
Figure 5: The length-weight relationship curve for both sexes of L. nebulosus

The mean lengths identified in the length distribution of L. nebulosus for the Hormozgan province was then used to estimate L_∞, K and t_0 of the Von Bertalanffy equation as 67.2cm, 0.16 (per year) and -1.161 year, respectively (Fig.6). These results gave a growth performance index (Φ) of 2.86 for this species in this area.

Using length-converted catch curve, total mortality rate (Z) was estimated as 1.13 year$^{-1}$ ($r = 0.989$) (Fig.7). Natural and Fishing mortality were estimated 0.57 and 0.56 year$^{-1}$ respectively, which give E value as 0.5.

Figure 6: Growth curve fitted from mean lengths of the length frequency distribution for L. nebulosus from the Persian Gulf and Oman Sea (Hormouzgan province waters).
Figure 7: Length-converted Catch Curve for the estimation of total mortality (Z)

Table 2: Length- weight relationship of *L. nebulosus* in FAO area51
(Type of measurement was fork length)

<table>
<thead>
<tr>
<th>Area</th>
<th>a</th>
<th>b</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>South of Iran</td>
<td>0.051</td>
<td>2.722</td>
<td>Present study</td>
</tr>
<tr>
<td>Gulf of Aden</td>
<td>0.0161</td>
<td>2.970</td>
<td>Sanders et al., 1984</td>
</tr>
<tr>
<td>Kuwait</td>
<td>0.0173</td>
<td>3.01</td>
<td>Baddar, 1987</td>
</tr>
<tr>
<td>Southern Persian Gulf</td>
<td>------</td>
<td>2.88</td>
<td>Grandcourt et al., 2006</td>
</tr>
</tbody>
</table>

Table 3: Summary of the growth parameters estimated for *L. nebulosus* from the FAO area51

<table>
<thead>
<tr>
<th>Area</th>
<th>L_{∞} (cm)</th>
<th>K (per year)</th>
<th>t_0</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Persian Gulf</td>
<td>66.2</td>
<td>0.11</td>
<td>-3.00</td>
<td>Grandcourt et al., 2006</td>
</tr>
<tr>
<td>Emirate of Abu Dhabi</td>
<td>61.08</td>
<td>0.14</td>
<td>-2.34</td>
<td>Grandcourt et al., 2002</td>
</tr>
<tr>
<td>Kuwait</td>
<td>62.73</td>
<td>0.19</td>
<td>F</td>
<td>Baddar, 1987</td>
</tr>
<tr>
<td>Coastal area of Mauritius</td>
<td>85-87.26</td>
<td>0.205-0.275</td>
<td>-0.01 t_0 -1</td>
<td>Rathacharen et al., 1995</td>
</tr>
<tr>
<td>Gulf of Aden</td>
<td>87</td>
<td>0.09</td>
<td>0.54</td>
<td>Al Sakaff & Esseen, 1999</td>
</tr>
<tr>
<td>South waters of Iran (Persian Gulf & Oman Sea)</td>
<td>67.2</td>
<td>0.16</td>
<td>-1.161</td>
<td>Present study</td>
</tr>
</tbody>
</table>

Downloaded from jifro.ir at 5:58 +0430 on Tuesday May 28th 2019
Discussion

There was well defined peak in the March for reproductive cycle of spangled emperor (\textit{L. nebulosus}) in the Southern Iranian waters (Persian Gulf and Sea of Oman). Comparing the results of the present study with Grandcourt \textit{et al} (2006) study, in the southern Persian Gulf (Abu Dhabi waters), it reveals that the spawning season for this species in southern Persian Gulf (Abu Dhabi waters) occurred from April to May, but in the Iranian waters (Hormouzgan province) occurred from March and ended in June, which shows seasonal reproductive cycles are nearly common among tropical fishes (Grandcourt \textit{et al.}, 2006).

The maximum, minimum and mean weights were 64.5, 17cm and 1303.6g, respectively. The b value of the length-weight relationship for \textit{L. nebulosus} in the present study was estimated to be b=2.722, which indicates negative allometric growth (King, 1995). The b values estimated by different authors for \textit{L. nebulosus} in area51 are demonstrated in Table 2. The reasons for the variation of b in the different regions are said to be due to seasonal fluctuations in environmental parameters, such as physiological conditions of the fish at the time of collection, sex, gonadal development and nutritive conditions in the environment of fish (Biswas, 1993).

The growth curve estimated for this species using the above growth parameters indicates that spangled emperor (\textit{L. nebulosus}) attains 19.6cm, 26.7cm, 32.7cm, 37.8cm and 42.1 cm fork length respectively from 1\textdegree{} to 5\textdegree{} years age (Fig. 6).

The estimated K (0.16 per year) revealed that, although the spangled emperor can be characterized of fish with low growth rate (Rathacharen \textit{et al.}, 1995), but estimated t\textsubscript{0} with negative sign (-1.61) suggests that juveniles of emperor grew more quickly. Various estimate of growth parameters of \textit{L. nebulosus} available from other studies in the FAO area51, are tabulated in Table 3.

Grandcourt \textit{et al.} (2006) calculated \(L_{\infty}\) and K for this species in the southern Persian Gulf as 66.2cm 0.11 per year which agree with the results of the present study. Also the results of present study are coinciding with Badder (1987) work in Kuwait waters. A trade-off between growth rate (K) and maximum size (\(L_{\infty}\)) is often found. This trade off is influenced by several factors, like temperature, mortality, or food availability. Increased food availability causes a shift towards larger maximum size, but may not increase the growth rate (Torcu-Koc \textit{et al.}, 2004).

Our value of \(\Phi'\) (2.8) is similar to that estimated by Grandcourt \textit{et al.}, 2002 (2.8) for the Emirate of Abu Dhabi waters, suggesting a similar growth pattern for this stock of \textit{L. nebulosus} in these two area, when accounting for inter-correlation in parameter estimation. It is however, interesting to note that, growth parameters (\(L_{\infty}\), K and t\textsubscript{0}) estimated in the
Gulf of Aden and Mauritius coastal area are highly variable in comparing to other areas which might be due to different ecological situations of Aden Gulf and Mauritius coastal areas with other areas in north-west Indian Ocean.

The total mortality was estimated at 1.13 year\(^{-1}\) and natural mortality at 0.57 year\(^{-1}\) resulting in optimal fishing mortality and consequently an optimal value of exploitation rate (E=0.5). The total and natural mortality estimated in the present study is higher than the values estimated by Grandcourt et al., 2006 (Z= 0.56, M= 0.20) in Persian Gulf and Oman Sea which might be due to lower fishing pressure on *L. nebulosus* in other part of the Persian Gulf and Oman Sea.

Small changes in the growth parameters used could seriously affect the computed mortality rates (Tserpes & Tsimenidis, 2001) and to describe the current position of this stock there were lack of information on the effect of fishing on recruitment and behavior pattern of spangled emperor. However, the exploitation ratio E = 0.50, revealed rational exploitation of this stock in the study area. In addition, to keep the level of fishing at which catches are sustainable, conserve the level of spawning stock and reduce the effect of fishing on the biomass, the fisheries strategy should be planned so that the fishing period follows the reproductive period.

References

Pauly, D., 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Roma, Italy. 450P.

Rathacharen, S., Venkatasami, A., and Degambur, D., 1995. Growth parameters and rates of mortality of Epinephelus fasciatus, Lethrinus nebulosus, Siganus sutor, Naso unicornis and Mugil cephalus from the coastal areas of mauritius as estimated from analyses of length frequencies. Albion Fisheries Research Centre, 12P.

بررسی پارامترهای رشد، نرخ مربک و میر و فصل تخمپزی در Lethrinus nebulosus ماهی شعراً معمولی (Lethrinus nebulosus) در آبهای ساحلی استان هرمزگان (خلیج فارس و دریای عمان)

سید امین الله تقوی مطلق۱؛ آزرو و هیاب نژاد۲؛ سید جعفر سید آبادی۳؛ مهدی قدرتی شجاعی۴ و مربی حکیم الهی؛

تاریخ پذیرش: ۱۳۸۸ شهریور

چکیده

در این تحقیق، پارامترهای جمعیتی و فصل تخمپزی ماهی شعراً (Lethrinus nebulosus) در آبهای ساحلی استان هرمزگان مطالعه شد. بررسی تغییرات ماهانه GSI جنس ماده نشان می‌دهد تخمپزی این گونه از سفرنام را تا حدود ماه و ماهی شعراً در اسفند ماه می‌باشد. پارامترهای رشد فون برانتلی، شامل طول بی‌پیتایت، نرخ رشد و BR ترتیب ۶۷/۳ سانتی‌متر در سال و ۱/۷۶ سال تخمین داد. با توجه به پارامترهای رشد محاسبه شده، ماهی شعراً جزو گونه‌های با نرخ رشد کم محسوب می‌شود. رابطه بین طول چینگالی و وزن یا برورت W لبهفس ۶۵/۳ = تخمین‌گرده باید توجه به مقدار b محاسبه شده ماهی شعراً دارای رشد ویژه‌ای دارد و این دلیلی مبنای می‌باشد. مرگ و میر طبیعی، صدایی و کل ترتیب Lethrinus nebulosus کلمات کلیدی: شعراً معمولی، تخمپزی، ضرب‌بندی رشد، میر و مرگ، استان هرمزگان

۱- موسسه تحقیقات شیلات ایران، تهران، صندوق پستی: ۱۴۱۵۰-۶۱۶۱۶۵۵
۲- دانشکده علوم دریایی و منابع طبیعی دانشگاه تربیت مدرس، نور صندوق پستی: ۳۵۷-۱۴۱۴۵۰-۶۱۶۱۹۶۱
۳- پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندرعباس صندوق پستی: ۱۵۹۷-۱۴۱۴۵۰-۶۱۶۱۹۷۹۵
۴- دانشگاه هرمزگان، بندرعباس صندوق پستی: ۱۴۱۴۵۰-۶۱۶۱۹۷۹۵
s_taghvimotlagh@hotmail.com

* پست الکترونیکی نویسندگان مسئول.