Growth performances and hemato-immunological responses of common carp (Cyprinus carpio Linnaeus, 1758) to fermented Aspergillus oryzae

Hedayati S.A.¹; Bagheri T.²; Hoseinifar S.H.¹; Van Doan H.³*

Received: June 2017 Accepted: November 2017

Abstract
The present study investigates the effects of varying levels of dietary fermented Aspergillus oryzae (0 g Kg⁻¹ as control group, 10, 20 and 30 g Kg⁻¹) on performance and haemato-immunological indices of common carp (Cyprinus carpio) fingerlings. Common carp fingerlings (n=240, w=4.56±0.17 g) were supplied, randomly stocked in 12 aquaria and fed with experimental diets for 7 weeks. The results revealed no significant differences between performance parameters of fermented A. oryzae fed test and control diets (p>0.05). Also, evaluation of haematological parameters (RBC, Hct, Hb) and white blood cell (WBC) counts showed no notable changes between experimental groups (p>0.05). However, respiratory burst activity was meaningfully higher in fish fed fermented A. oryzae compared to control group (p<0.05). The present results showed that possible effects of administration of fermented A. oryzae on immune responses in carp fingerlings.

Keywords: Diet, Fish immunology, Hemato-immunological indices, Prebiotic

1-Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2-Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Chabahar, Iran
3-Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand

*Corresponding author's Email: hien.d@cmu.ac.th
Introduction
The ultimate goal in aquaculture is raising the production efficiency to maximize commercially benefits. One of the methods for increasing the efficiency of production is raising the density or intensive culture but it might lead to disease in fish and shrimp due to reduction of water quality and increases the occurrence of stressful situations. Using feed additives such as probiotics, prebiotics and fermented products as functional feed ingredients to increase the feeding efficiency and immune response is one of the proposed ideas (Nayak, 2010).

The potential negative effects of antibiotics application in aquaculture include emergence of resistant bacteria causing increased attention toward non-pathogenic bacteria as probiotic and control agents. Fermanto® is the commercially fermented product of Aspergillus orizae which is known as Aspergillus Meal (AM). The AM does not have any spores or live cell and is experimented for exploring to increase intestinal digestive efficiency (Torres-Rodriguez, 2005). It has been shown that administration of Fermanto® in culture media increases the growth of Lactobacillus spp. (Higgins, 2007). However, this feed additive has been used mainly in terrestrial animals and there is very limited information about the possible effects on fish performance and health. Therefore, this study was carried out to investigate the effects of fermented A. oryzae on performance and hemato-immunological indices of common carp fry.

Materials and methods
Fish maintenance and culture
Common carp fries were obtained from a private farm and transported to Aquaculture Laboratory of Gorgan University of Agricultural Science and Natural Resources. Fish were allowed to acclimatize to experimental condition for two weeks and thereafter, randomly stocked (n=240, w=4.56±0.17 g) into 12 aquaria (200 L) at a density of 20 fish per aquaria. Fish were hand-fed with experimental diets twice a day at rate of 3% of body weight during the trial (Akbary et al., 2015).

Experimental diets
The experimental diets were prepared by supplementation of a basal diet
(control diet, 0 g Kg\(^{-1}\) fermented \(A.\) \textit{oryzae}), with different levels (10, 20
30g Kg\(^{-1}\)) (Hoseinifar \textit{et al.}, 2015) of
fermented \(A.\) \textit{oryzae} (Fermacto®)
(Table 1). The ingredients were blended
and pelleted using a meat grinder (2-
mm die). Thereafter diets were air-dried
and stored in plastic bag at 4\(^\circ\)C till use.

**Table 1: Dietary formulations (g Kg\(^{-1}\)) and
proximate composition of experimental diet.**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish meal</td>
<td>400</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>210</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>135</td>
</tr>
<tr>
<td>Gluten</td>
<td>55</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>60</td>
</tr>
<tr>
<td>Fish oil</td>
<td>60</td>
</tr>
<tr>
<td>Mineral premix(^*)</td>
<td>30</td>
</tr>
<tr>
<td>Vitamin premix(^*)</td>
<td>20</td>
</tr>
<tr>
<td>Binder(^†)</td>
<td>20</td>
</tr>
<tr>
<td>Anti-fungi(^‡)</td>
<td>5</td>
</tr>
<tr>
<td>Antioxidant(^§)</td>
<td>5</td>
</tr>
</tbody>
</table>

Proximate analysis (dry matter basis)

<table>
<thead>
<tr>
<th></th>
<th>Dry matter</th>
<th>Crude protein</th>
<th>Crude lipid</th>
<th>Ash</th>
<th>Fiber</th>
<th>Energy (MJ kg(^{-1})) **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>895.0</td>
<td>382.2</td>
<td>102.4</td>
<td>34.5</td>
<td>112.0</td>
<td>17.55</td>
</tr>
</tbody>
</table>

Premix detailed by (Hoseinifar \textit{et al.}, 2015)
† Amet binder TM, Mehr Taban-e- Yazd, Iran
‡ ToxiBan antifungal (Vet-A-Mix, Shenan-doah, IA)
§ Butylated hydroxytoluene (BHT) (Merck, Germany)
Nitrogen-free extracts (NFE) = dry matter –
(crude protein + crude lipid + ash + fibre)
** Gross energy (MJ kg\(^{-1}\)) calculated according
to 23.6 kJ g\(^{-1}\) for protein, 39.5 kJ g\(^{-1}\) for lipid and
17.0 kJ g\(^{-1}\) for NFE

Growth performance
The performance parameters and
survival rate were calculated as follows
(Castell and Tiews 1979):

\[
\text{Weight gain (\%) = } (W_2 - W_1 / W_1) \times 100;
\]

\[
\text{SGR = 100} \times (\ln W_f - \ln W_i) / T;
\]

\[
\text{FCR = Feed intake (g)/Weight gain (g)};
\]

\[
\text{Survival rate= } (N_f / N_i) \times 100;
\]

Which; \(W_f\) is the final weight (at the end feeding trial) and \(W_i\) is the initial
weight (at the beginning of trial); \(T\) is
the duration of trial (7 weeks or 49
days); \(N_f\) and \(N_i\) are the final and initial
number of fish, respectively.

Hemato-immunological indices
After 7 weeks of feeding, fish were
euthanized and blood samples collected
from the caudal vein of each fish (three
fish per tank) to assess hemato-
immunological parameters. The total
counter number of red blood cells (RBCs) and
white blood cells (WBCs) were enumerated according to Blaxhall and Daisley, (1973) using a Neubauer slide under the light microscope. Haematocrit was measured by the microhaematocrit method (Brown, 1988) and reported as percentage of packed cell volume (% PCV) (Chardeh Baladehi et al., 2017). The levels of Hemoglobin were assessed using Sahli’s method (Blaxhall and Daisley, 1973). The respiratory burst activity was evaluated in triplicates with a modified chemiluminescent assay (measurement of light emission) using an automated system for chemiluminescent analysis (Luminoskan Ascent T392; Thermo Fisher Scientific, Inc.) Khoshbavar-Rostami et al. (2006).

Statistical analysis
All of the analyses were carried out using SPSS (version 20) and the charts were drawn with Microsoft Office Excel (version 2010). Values are presented as the mean±SE. In order to perform statistical analysis, one-way ANOVA was used to determine the effects of various levels of fermented A. oryzae on performance and haemato-immunological parameters, followed by a Duncan’s multiple range test, when there was a significant difference (p<0.05).

Results
Table 2 represents the effects of fermented A. oryzae on common carp growth performance. At the start of the trial no remarkable differences in the initial weight of the treatments (p>0.05). After 7 weeks feeding with fermented A. oryzae (10, 20 or 30 g Kg⁻¹), no significant change observed with regard to; final weights, WG, SGR, or FCR in common carp fry (p>0.05) (Table 2).

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>10 g Kg⁻¹</th>
<th>20 g Kg⁻¹</th>
<th>30 g Kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (g)</td>
<td>4.60±0.25</td>
<td>4.54±0.21</td>
<td>4.61±0.30</td>
<td>4.50±0.28</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>8.04±0.39</td>
<td>8.14±0.42</td>
<td>8.33±0.35</td>
<td>8.34±0.21</td>
</tr>
<tr>
<td>Weight gain (%)</td>
<td>74.30±8.03</td>
<td>79.18±12.46</td>
<td>80.31±13.65</td>
<td>85.33±15.57</td>
</tr>
<tr>
<td>SGR</td>
<td>1.13±0.11</td>
<td>1.19±0.16</td>
<td>1.20±0.12</td>
<td>1.25±0.15</td>
</tr>
<tr>
<td>FCR</td>
<td>2.88±0.41</td>
<td>2.75±0.25</td>
<td>2.50±0.36</td>
<td>2.64±0.51</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

The effects of dietary fermented A. oryzae on haemato-immunological parameters of carp fry are presented in Table 3.
Table 3: The effects of dietary fermented Aspergillus oryzae on hemato-immunological parameters of carp fry.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Erythrocyte count ($\times 10^6$ µL$^{-1}$)</th>
<th>Leukocyte count ($\times 10^3$ µL$^{-1}$)</th>
<th>Haemoglobin (g dL$^{-1}$)</th>
<th>Haematocrit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.65±0.26</td>
<td>38.66±2.8</td>
<td>7.50±0.20</td>
<td>24.10±2.30</td>
</tr>
<tr>
<td>10 g Kg$^{-1}$</td>
<td>1.70±0.20</td>
<td>38.26±3.6</td>
<td>7.90±0.50</td>
<td>23.86±1.80</td>
</tr>
<tr>
<td>20 g Kg$^{-1}$</td>
<td>1.62±0.45</td>
<td>37.33±1.7</td>
<td>7.30±0.30</td>
<td>23.40±2.70</td>
</tr>
<tr>
<td>30 g Kg$^{-1}$</td>
<td>1.74±0.30</td>
<td>39.30±2.4</td>
<td>7.20±0.50</td>
<td>24.60±2.60</td>
</tr>
</tbody>
</table>

Evaluation of the parameters showed that fermented A. oryzae had no remarkable effects on erythrocyte count (RBC), haemoglobin, haematocrit and leukocyte counts ($p>0.05$). The respiratory burst activity data are presented in Fig. 1. Common carp fed with fermented A. oryzae supplemented diet showed significantly increased respiratory burst activity compared to the control group ($p<0.05$) (Fig. 1). There were no significant differences between different levels of fermented A. oryzae with regard to respiratory burst activity ($p>0.05$).

Discussion

Today a wide range of non-digestible dietary supplements such as fermentable products are using in fish nutrition in order to modulate the intestinal microbiota (Hoseinifar et al., 2011b). It is now well-documented that manipulation of intestinal microbiota toward potentially beneficial communities leads to promotion of the
immune response and overall host health. Hence, increasing researches were performed regarding the effects of feed additives like prebiotics and fermented products.

Several studies evaluated the effects of fermented products on fish health, immune responses and other aspects of the fish physiology (Bagheri et al., 2008; Merrifield et al., 2010; Akrami et al., 2013). The present results revealed that diets supplemented with fermented A. oryzae had no significant effects on growth parameters on common carp fry (p<0.05). In agreement with our findings, Kim et al., (2009) reported that dietary administration of Aspergillus had no significant effect on diet acceptability and growth performance for juvenile parrot fish (O. fasciatus). However, it has been reported that Fermacto® (fermented product of A. oryzae) fed at 30 g Kg⁻¹ level increased final weight and daily gain weight of broiler chickens (Navidshad et al., 2010). Furthermore, in a study on Huso huso feeding with 10 g Kg⁻¹ and 20 g Kg⁻¹ of brewer's yeast (S. cerevisiae var. ellipsoideus) (inactive form) significantly increased final weight, weight gain, SGR and FCR (Hoseinifar et al., 2011a).

It has been suggested that administration of prebiotics and fermented products can modulate intestinal microbiota toward beneficial bacterial groups like LAB (Lactic Acid Bacteria) which improve growth performance. The lack of observed differences here may be due to the method of diet preparation, differences in culture condition, species and dosage.

Hematological parameters of fish are a useful parameter for monitoring physiological status and general health (Merrifield et al., 2010). Total and differential leukocyte counts are important indicators of fish immune status as leukocytes are the main phagocytic and immune effector cells against pathogens. In accordance with these findings, Hoseinifar et al., (2011a) observed no remarkable change in haematological factors of H. huso fed dietary inactive brewer's yeast S. cerevisiae var. ellipsoideus. However, increased red blood cell count was reported in Aspergillus fed parrot fish (Kim et al., 2009). In contrast with our results with regard to haematological parameters, respiratory burst activity was remarkably higher in fish fed fermented A. oryzae. It seems that probably fermented A. oryzae modulated immune response of common carp fry. Likewise, dietary Vitace®, a commercial fermentable fiber, beneficially affected innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) (Yarahmadi et al., 2014).

To sum up, the results of this study suggested that inclusion of fermented A. oryzae in carp fry diet can beneficially affects immune response. However, determination of exact effects on innate immune response and mode of action need further research.

Acknowledgement
The authors would like to thanks the technical supports of the staff at
aquaculture lab of Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. The research project was funded by Functional Food Research Center for Wellbeing, Chiang Mai University, Thailand.

References

