Isolation and Identification of Histamine-forming bacteria in frozen Skipjack tuna (*Katsuwonus pelamis*)

Koohdar V. A. ¹; Razavilar V.; Motalebi A. A.²; Mosakhani F. ³; Valinassab T. ²

Received: October 2010 Accepted: April 2011

Abstract

In this study a series of experiments were carried out to detect and identify histamine-forming bacteria and analyze histamine content for evaluation of current harvesting and post harvesting procedures. The target fish was Skipjack (*Katsuwonus pelamis*) in which the samples were collected from Oman Sea waters harvested by gillnet or purse seine methods. Bacteriological isolates and the amount of histamine were obtained from the muscle around the gills. The obtained results indicated that the average of total and psychrophilic counts were 7.2×10⁶ and 2.9×10⁶ CFU/g, respectively. Histamine-forming bacteria occurred on a low scale of total bacterial load with the mean of 2.8 ×10² CFU/g. Diverse bacterial isolates were identified as histamine-forming bacteria. Amongst them, *Proteus* spp. with the highest abundance in samples contributed 24.5% followed by *Clostridium perfringens* (22.5%), *Klebsiella* spp. (15.0%), *Enterobacter* spp. (11.5%) and the other isolates (26.5%). In comparison with USFDA standard, the amount of histamine in 22.2 and 42.2% of the examined samples were 20- 50ppm, and >50ppm, respectively. Therefore, there are seafood safety risks in the current harvesting and post harvesting methods used in skipjack industry and proper preventative methods for histamine formation are recommended.

Keywords: Skipjack, *Katsuwonus pelamis*, Histamine, Bacteria, Oman Sea

¹-Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, P.O.Box: 14155-775, Tehran, Iran.
²-Iranian Fisheries Research Organization, P.O.Box: 14155-6116, Tehran, Iran.
³-Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, P.O.Box: 31485-313, Karaj, Iran.

Corresponding author’s email: valiollah.kohdar@kiau.ac.ir
Introduction

Fish and seafood are one of the most important protein sources than other foods in many parts of the world; but fish is a highly perishable food, which spoils soon after death, if not preserved properly (Motalebi, 2010). Consumption of spoiled fish results in the outbreaks of food poisoning such as scombroid poisoning. Scombroid poisoning also called histamine poisoning is worldwide intoxication, but since it is a rather mild illness it is usually incompletely recorded in most countries (Ahmed, 1991). It is known as a poisoning related with some types of dark meat consumption belonging to Scombroidae and Scombrosocidae families which contain very large amounts of free histidine generally in their muscle tissues (Mlnereyey et al., 1996). Histidine is converted to histamine by microbial histidine decarboxylase enzyme. Consumption of spoiled fresh, frozen fish and tinned fish products which contain unusually high levels of histamine which results in the outbreaks of histamine fish poisoning is one such food poisoning (Çaklý and Kýþla, 2003; Choudhury et al., 2008). Freshly caught fish have histamine levels of less than 2ppm. Fish containing histamine levels greater than 20ppm cause adverse symptoms in people. According to the Food and Drug Administration (FDA), histamine levels of between 20 and 50ppm indicate that the fish has deteriorated. The FDA “action level” for histamine in raw, frozen or canned tuna is 50ppm (FDA, 1998; Codori and Marinopoulos, 2010).

A large and diverse group of bacteria have been reported to be responsible for the histamine found in fish and most of them are considered to be enterobacteria (Middlebrooks et al., 1988). In general, the amino acid decarboxylase enzymes, especially histidine decarboxylase, can be found in some species of Enterobacteriaceae, Lactobacillus, Pseudomonas, Vibrio, Clostridium and Photobacterium (Taylor, 1986; Ababouch, 1991; Lehane and Olley, 2000). Yoshinaga and Frank (1982) suggested that the diversity of bacteria with histidine decarboxylase activity observed in scombroids can be attributed to the type of seafood, fish species, duration and temperature storage condition. Also there are some other factors such as feeding habits, geographical position, fishing gear, season, water temperature and salinity, the way the product is handled after harvest and market environs which can affect composition and type of histamine-forming bacteria in fish.

The Skipjack is distributed in all parts of the Oman Sea both Iranian and Oman waters (Assadi and Dehghani, 1997), and the main fishing methods in these areas are drift gillnet, long-line and purse-seine with the large-scale fishing of industrial purse seiners. It is noteworthy to mention that the caught fishes cannot immediately be collected after entangling and they remain inside the water for a while with considerable duration for further transferring on board to be cooled before being frozen and stored. If these delays are prolonged, some post mortem decomposition and accumulation of histamine can occur in the fish (Yoshinaga and Frank, 1982). Other factors such as unsuitable handling, post-catching contamination, inadequate chill-storage procedures, inadequate freezing and
thawing procedures also affect the probability of histamine accumulation. These kinds of experiments can be used for evaluation of current harvesting and post harvesting methods in skipjack tuna industry. The main objectives of this study were to identify the histamine-forming bacteria and to determine the amount of histamine in frozen skipjack.

Materials and methods

Forty-five specimens of frozen skipjack tuna were randomly obtained from the fish canning company. All samples were harvested from Oman Sea (Chabahar port). Each specimen was gutted and then cut into small pieces. Since the tissues of gill and gut are considered as the major source of histamine-forming bacteria in fish (Lopez-Sabater et al., 1996), 0.5-1 kg of muscle near the gills were collected aseptically. Samples were covered with ice and immediately (<an hour) transported to the microbiology laboratory and were preserved frozen until analysis. After thawing at room temperature, samples were skinned and deboned aseptically, and the flesh were homogenized and blended in warning commercial blender model 35BL40 (8011P), without any adding of liquid. The homogenate was diluted in sterile 0.1% peptone (Yoshinaga and Frank, 1982), and inoculated on duplicate plates of tryptase soy agar (TSA) for mesophilic and psychrophilic counts after incubation at 35°C for 24h and 20°C for 5 days, respectively. The Enterobacteriaceae family was enumerated in violet red bile dextrose agar (VRBA) after incubation at 37°C for 24h (Lopez-Sabater et al., 1996). For the enumeration of histamine-forming bacteria, 1ml of serially diluted homogenates was poured on to 4 plates containing Niven’s medium (Niven et al., 1981) and 2 plates containing modified Niven’s medium (Yoshinaga and Frank, 1982). Two plates containing Niven’s medium were incubated at 37°C for 48h, 2 other plates were incubated at 20°C for 5 days (Lopez-Sabater et al., 1996), and the final 2 plates containing the modified Niven’s medium were incubated at 37°C for 48h in an anaerobic condition (Yoshinaga and Frank, 1982). The colonies with purple halo around Niven’s medium and pink halo around modified Niven’s medium were enumerated. These positive colonies were aseptically isolated and streaked on tryptase soy agar slants supplemented with 0.1% L-histidine-Hcl with pH= 6.0 and incubated at 37°C for 24h. Isolates were stored at a temperature of 2°C until used for bacterial species identification (Lopez-Sabater et al., 1996). Niven-positive isolates were gram stained and examined under oil immersion. Gram-positive isolates were identified by catalase test, carbohydrate fermentation, colony morphology and various biochemical tests (Holt et al., 1994). Gram-negative rods were identified by differential media and carbohydrate and biochemical properties as described by Berge’s manual of determinative bacteriology (Holt et al., 1994). All isolated strains were confirmed as histamine-forming bacteria by the methods described by Smith et al. (1982) and Yoshinaga and Frank (1982). The muscle samples were analyzed for amount of histamine by the enzymic method. Enzyme Linked Immunosorbant Assay (ELISA) method was used for this purpose. Marcobal et al. (2005) reported
that ELISA method for histamine determination has a good correlation with high performance liquid chromatography (HPLC) analysis. The Veratox® histamine test was from NEOGEN Corporation. It is commonly used for the quantitative analysis of histamine in scombroids. From point of statistical analysis, histamine content, the mean values of histamine-forming bacteria and histamine-forming Enterobacteriaceae counts were compared using a one-way analysis of variance (ANOVA). Statistical analyses were done using the SPSS software (ver. 16), and all significant levels were considered at the level of p<0.05.

Results

The mean counts of mesopholic and psychrophilic in 45 samples of skipjack were 7.2×10^6 and 2.9×10^6 CFU/g, respectively. The mean of histamine-forming bacterial count was about 2.8×10^2 CFU/g and it was 0.004% and 0.009% of the total and psychrophilic bacterial loads, respectively (Fig. 1). Enterobacteriaceae counts were between 0.0 to 3.1×10^4 CFU/g and the average of it was 1.4×10^3 CFU/g. Figure 2 shows histamine concentration and the mean values of histamine-forming enterobacteriaceae count in studied samples.

![Figure 1: Histamine content (ELIZA method) and the mean values of histamine-forming bacterial count in frozen skipjack; n=45](image-url)
Fourteen bacterial strains with histidine decarboxylase activity were isolated and then tested for their ability to produce histamine, of which 8 strains (57.14%) of these tentative isolates showed positive results (Table 1). Sixteen of the total 45 samples of frozen skipjacks contained less than 20 ppm amount of histamine; but this amount was 20-50ppm and more than 50 ppm in 10 and 19 samples, respectively. Tables 2 and 3 show histamine concentration and the type of bacteria isolated in samples with a histamine content of more than 20 ppm. There was significant difference in histamine contents in samples with different numbers of histamine-forming bacteria; so that the samples with high quantities of histamine-forming bacteria had significantly higher levels of histamine than other samples (p<0.05). The same result was achieved for samples with different numbers of histamine-forming enterobacteriaceae (p<0.05).

Table 1: Histamine-forming bacteria isolated from frozen skipjack; n=33

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>No. of tentative histamine-forming bacteria</th>
<th>Frequency (%)</th>
<th>Confirmed histamine-forming bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas hydrophila</td>
<td>250</td>
<td>2.0</td>
<td>n</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>1000</td>
<td>8.0</td>
<td>n</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>2807</td>
<td>22.5</td>
<td>y</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>915</td>
<td>7.3</td>
<td>y</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>530</td>
<td>4.2</td>
<td>y</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>518</td>
<td>4.2</td>
<td>n</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>230</td>
<td>1.8</td>
<td>y</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>1640</td>
<td>13.1</td>
<td>y</td>
</tr>
<tr>
<td>Morganella morgan</td>
<td>315</td>
<td>2.5</td>
<td>y</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>1695</td>
<td>13.6</td>
<td>y</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>1360</td>
<td>11.0</td>
<td>y</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>111</td>
<td>0.9</td>
<td>n</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>760</td>
<td>6.1</td>
<td>n</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>355</td>
<td>2.8</td>
<td>n</td>
</tr>
<tr>
<td>Total</td>
<td>12486</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

y = yes, n = no
Figure 2: Histamine content (ELIZA method) and the mean values of histamine-forming enterobacteriaceae count in frozen skipjack; n=45

Table 2: Bacterial isolates, histamine-forming bacterial count, and histamine-forming enterobacteriaceae count in 10 samples with histamine concentration of 20–50 ppm

<table>
<thead>
<tr>
<th>Sample</th>
<th>Histamine-forming bacterial count (CFU/g)</th>
<th>Histamine-forming Enterobacteriaceae count (CFU/g)</th>
<th>Histamine content (ppm)</th>
<th>Bacterial isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>80</td>
<td>21.0</td>
<td>C. freundii, E. coli, K. oxytoca</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>25</td>
<td>33.1</td>
<td>C. freundii, K. oxytoca, S. marcescens</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>50</td>
<td>35.9</td>
<td>Cl. perfringens, E. aerogenes, E. coli</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>10</td>
<td>23.2</td>
<td>Cl. perfringens, E. coli, P. aeruginosa</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>30</td>
<td>42.5</td>
<td>Cl. Perfringens, K. pneumoniae</td>
</tr>
<tr>
<td>6</td>
<td>190</td>
<td>40</td>
<td>45.6</td>
<td>Cl. Perfringens, K. pneumoniae, P. mirabilis, S. marcescens</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>25</td>
<td>26.5</td>
<td>E. cloacae</td>
</tr>
<tr>
<td>8</td>
<td>95</td>
<td>30</td>
<td>44.8</td>
<td>E. cloacae</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>15</td>
<td>33.4</td>
<td>K. pneumoniae, P. fluorescens</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>0</td>
<td>24.7</td>
<td>E. cloacae</td>
</tr>
</tbody>
</table>
Table 3: Bacterial isolates, histamine-forming bacterial count, and histamine-forming enterobacteriaceae count in 19 samples with histamine concentration of more than 50 ppm

<table>
<thead>
<tr>
<th>Sample</th>
<th>Histamine forming bacterial count (CFU/g)</th>
<th>Histamine forming Enterobacteria count (CFU/g)</th>
<th>Histamine content (ppm)</th>
<th>Bacterial isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2160</td>
<td>1500</td>
<td>163.7</td>
<td>A. hydrophila, C. freundii, Cl. Perfringens, E. aerogenes, E. coli, P. mirabilis, P. vulgaris</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>110</td>
<td>120.0</td>
<td>A. hydrophila, C. freundii, E. aerogenes, K. pneumoniae, P. mirabilis</td>
</tr>
<tr>
<td>3</td>
<td>485</td>
<td>445</td>
<td>153.8</td>
<td>A. hydrophila, E. aerogenes, E. cloacae, E. coli, K. pneumoniae, K. oxytoca, P. mirabilis, P. vulgaris</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>130</td>
<td>98.2</td>
<td>C. freundii, Cl. Perfringens, E. aerogenes, K. pneumoniae</td>
</tr>
<tr>
<td>5</td>
<td>2050</td>
<td>1500</td>
<td>169.5</td>
<td>C. freundii, Cl. Perfringens, E. aerogenes, E. cloacae, K. pneumoniae, P. fluorescens, P. mirabilis, P. vulgaris</td>
</tr>
<tr>
<td>6</td>
<td>420</td>
<td>220</td>
<td>175.5</td>
<td>C. freundii, Cl. Perfringens, E. aerogenes, K. pneumoniae, M. morganii, P. fluorescens, P. vulgaris</td>
</tr>
<tr>
<td>7</td>
<td>1400</td>
<td>850</td>
<td>142.0</td>
<td>C. freundii, Cl. Perfringens, E. aerogenes, P. fluorescens, P. mirabilis, P. vulgaris, S. marcescens</td>
</tr>
<tr>
<td>8</td>
<td>455</td>
<td>340</td>
<td>44.8</td>
<td>C. freundii, Cl. perfringens, E. cloacae, E. coli, K. pneumoniae, S. marcescens</td>
</tr>
<tr>
<td>9</td>
<td>95</td>
<td>45</td>
<td>88.5</td>
<td>C. freundii, Cl. Perfringens, K. pneumoniae, P. fluorescens</td>
</tr>
<tr>
<td>10</td>
<td>290</td>
<td>100</td>
<td>153.8</td>
<td>C. freundii, Cl. Perfringens, M. morganii, P. mirabilis</td>
</tr>
<tr>
<td>11</td>
<td>1150</td>
<td>900</td>
<td>108.7</td>
<td>Cl. Perfringens, E. aerogenes, E. coli, K. pneumoniae, M. morganii, S. marcescens</td>
</tr>
<tr>
<td>12</td>
<td>570</td>
<td>290</td>
<td>123.2</td>
<td>Cl. perfringens, E. aerogenes, E-coli, K. pneumoniae, P. fluorescens, S. marcescens</td>
</tr>
<tr>
<td>13</td>
<td>910</td>
<td>810</td>
<td>197.0</td>
<td>Cl. perfringens, E. aerogenes, K. pneumoniae, P. mirabilis, P. vulgaris</td>
</tr>
<tr>
<td>14</td>
<td>185</td>
<td>100</td>
<td>78.2</td>
<td>Cl. Perfringens, E. aerogenes, S. marcescens</td>
</tr>
<tr>
<td>15</td>
<td>220</td>
<td>160</td>
<td>144.0</td>
<td>Cl. perfringens, E. cloacae, K. pneumoniae, P. aeruginosa, P. fluorescens, P. mirabilis</td>
</tr>
<tr>
<td>16</td>
<td>270</td>
<td>85</td>
<td>64.6</td>
<td>Cl. perfringens, E. coli, K. pneumoniae, P. aeruginosa</td>
</tr>
<tr>
<td>17</td>
<td>365</td>
<td>190</td>
<td>87.6</td>
<td>Cl. Perfringens, E. coli, P. fluorescens, P. mirabilis, P. vulgaris, S. marcescens</td>
</tr>
<tr>
<td>18</td>
<td>130</td>
<td>130</td>
<td>76.2</td>
<td>E. cloacae, E. coli, K. pneumoniae</td>
</tr>
<tr>
<td>19</td>
<td>80</td>
<td>80</td>
<td>64.2</td>
<td>E. cloacae, P. mirabilis</td>
</tr>
</tbody>
</table>

Discussion
Histamine content was significantly (p<0.05) higher in samples with high histamine-forming bacterial count (Fig. 1). The average histamine-forming bacterial count was 0.004% of the average total bacterial count, and we achieved the same results as the Lopez-Sabater et al. (1996) report related to the incidence of
histamine-forming bacteria in which their
estimation was < 0.1 % of the total
bacterial load. Meanwhile, Ababouch et al.
(1991)’s measurement of this value was
about 0.97% of total flora. Some other
studies found higher values and it was
reported that histamine-forming bacteria in
skipjack and jack mackerel enumerated to
about 31 and 13.4% of total bacterial load,
respectively (Omura et al., 1978;
Yoshinaga and Frank, 1982). However, it
should be considered that these
investigations were carried out with
spoiled fish.

Significant relationship (p<0.05)
was observed between histamine content
and Enterobacteriaceae count (Fig. 2). The
average Enterobacteriaceae count of
42.2% of the samples having high
histamine-forming bacterial count and
containing more than 50ppm amount of
histamine, was more than 3.3×10³ CFU/g.
Enterobacteriaceae species are the most
important histamine-forming bacteria in
tuna fish (Frank et al., 1985). In this
investigation 66.2% and 22.5% of
histamine-forming bacteria belonged to
Enterobacteriaceae and Clostridium
perfringens, respectively. Lopez-Sabater et
al. (1996) reported that 83% of histamine-
forming bacteria belonged to the
Enterobacteriaceae family. Lopez-Sabater
et al. (1994) reported that all isolates with
histidine-decarboxylase activity isolated in
their investigation were gram-negative and
from the 40 strains isolated from Niven’s
medium, 77.5% belonged to the
Enterobacteriaceae family. However, it
is noteworthy to mention that only aerobic
histamine-forming bacteria could be
isolated in their investigations meanwhile
in the present study, both aerobic and
anaerobic were found. Based on the
Yoshinaga and Frank (1982) study, 50% of
the isolated histamine-producing bacteria
were Clostridium perfringens.

All bacterial species with histidine
decarboxylase activity isolated in this
study (Table 1) have previously been
reported by other researchers (Omura et
al., 1978; Yoshinaga and Frank, 1982;
Taylor and Speckhard, 1983; Frank et al.,
1985; Middlebrooks et al., 1988; Lopez-
Sabater et al., 1994; Kim, 2001; Tsai et al.
2004; Choudhury et al., 2008). Behling
and Taylor (1982) indicated that the
histamine-producing bacteria could be
divided into two categories: a) those
species capable of producing large
quantities of histamine (>100mg/100ml) in
tuna infusion broth (TFIB) during a short
time (<24h) incubation at a temperature
above 15°C and b) those capable of
producing low histamine (<25mg/100ml)
in TFIB with a long time incubation
(≥48h) at a temperature ≥30°C. The
prevalence frequency for different
bacterial species indicated that Proteus
spp. (24.5%), Clostridium perfringens
(22.5%), Klebsiella spp. (15.0%),
Enterobacter spp. (11.6%), and
Morganella morganii (2.5%) had the
highest amount of histamine-forming
bacteria which belong to the category of
prolific histamine producers, and samples
with high concentrations of histamine,
contained various numbers of these
organisms (Tables 2 and 3). On the other
hand, other species consisting of
Citrobacter freundii with 8.0% prevalence,
Pseudomonas spp. (7.0 %), E. coli (4.1%),
Seratia marcescens (2.8%) and Aeromonas
Hydrophila (2.0%) can be categorized as slow-producers of the histamine group. Histamine intake ranged within 8-40, 40-100 and >100mg/100g which may cause slight, intermediate and intensive poisoning, respectively (Parente et al., 2001; Önal, 2007). The obtained results showed that of 45 examined samples, 35.6%, 22.2% and 42.2% of them contained less than 20ppm, 20-50ppm, and more than 50ppm amount of histamine, respectively. It can be concluded that there are sea food safety risks in the usual fishing method in the Oman Sea and post-fishing procedures used in skipjack canning industry in study areas. Since the prolific histamine forming bacteria were mesophilic and typically occur as a result of post-fishing contamination, good hygienic practices and proper cooling of tuna (with emphasis on skipjack) after catching and during transportation is recommended.

Acknowledgements
The authors appreciate Mrs. Kabirianfar for her efforts in sampling and Dr. Zafari for his laboratory cooperation.

References

Taylor, S. L. and Speckhard, M. W., 1983. Isolation of Histamine-Producing Bacteria from frozen tuna. Food Research Institute, Department of Food Microbiology and Toxicology and Food Science, Madison: University of Wisconsin Press.

جداسازی وشناسایی باکتری‌های تولید کننده هیستامین در ماهی هور مسقطی (Katsuwonous pelamis)

ولی الله کوهداور، و دود رضویلر، عباسعلی مطلبی، فرهاد موسی خانی، تورج ولی نسب

چکیده
درابین مطالعه، مجموعه ای از آزمایشات برای جداسازی وشناسایی باکتری‌های تولید کننده هیستامین و آنالیز میزان هیستامین، جهت ارزیابی روشهای صید و پس از صید انجام شد. ماهی هور مسقطی (Katsuwonous pelamis) صید شده از آب‌های دریای عمان با روشهای تورگونشگیر و تورگردان پیاله ای برای این منظور استفاده شد. جداسازی سویه‌های باکتری‌ها و تعیین میزان هیستامین، با استفاده از عضلات اطراف آبیشکی آنجام شد. نتایج حاصله نشان داد که میانگین شمارش کلی باکتری (TPC) و شمارش سرمادوست ها به ترتیب 2.10^{6} CFU/g و 2.10^{7} CFU/g تا 2.10^{8} CFU/g و با کل باکتری‌ها شمارش شد. باکتری‌های متورم به عنوان باکتری‌های تولید کننده هیستامین شناسایی شدند. از میان آنها، گونه های پروتوس با بیشترین فراوانی ($1/40$%) و پس از آن کلبسیدیوم پرفینجس ($2/24$%)، گونه های انتروباکر ($5/11$%) و ساباک پرکه ($5/24$%) در تولید هیستامین نقش داشتند. میزان هیستامین در نمونه‌های مورد آزمون متفاوت بود و $2/24$، $2/22$ و $2/6$ درصد نمونه‌ها به ترتیب حاوی مقدار 60، 50 و 5 ppm هیستامین بودند; بنابراین مخاطرات سلامتی در حضور روشهای صید و پس از صید موجود در مورد ماهی هور مسقطی وجود دارد و روشهای پیشگیری مناسب جهت جلوگیری از تولید هیستامین پیشنهاد می‌شود.

واژگان کلیدی: هور مسقطی، Katsuwonous pelamis، باکتری، درای عمان

1. دانشگاه دامپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران صندوق پستی 14155
2. مؤسسه تحقیقات دیاتلی ایران، تهران صندوق پستی 14155
3. دانشگاه دامپزشکی، دانشگاه آزاد اسلامی واحد کرج، صندوق پستی 31985-316

valiollah.kohdar@kiau.ac.ir