Initial salinity tolerance and ion-osmotic parameters in juvenile Russian Sturgeon, *Acipenser gueldenstaedtii*, Brandt, 1833

Farabi S. M. V. 1*; Najafpour S. 1; Ghiasi M. 1; Samadi H. 2

Received: September 2010 Accepted: January 2011

Abstract
The salinity tolerance, hematological and hydromineral regulation capabilities of juvenile Russian sturgeon (*Acipenser gueldenstaedtii*) were investigated in different ages and sizes in freshwater (FW: <0.5‰), estuary water (EW: 9.5‰) and Caspian Sea water (CSW: 12.5‰). The fish were directly transferred from FW to EW and CSW. The possible repercussions of ion-osmoregulatory processes on some classical indicators were examined at the end of 168 hours fish salinity tolerance. The mortality was not more than 35% in EW and CSW in both groups. The survival percent and salinity tolerance were increased with increment of age and size of fish. The survival percent and salinity tolerance were increased with increment of age and size of fish. The functional mechanism of osmotic and ionic homeostasis were similar in all groups (p>0.05) but differed in experimental media (p<0.05). Significant differences were observed between the levels of plasma ion concentrations in different media (p<0.01). Plasma Na⁺, K⁺ and Ca²⁺ concentrations were higher than those of FW media, but lower than in CSW media (p<0.05). Plasma Mg²⁺ concentrations were lower than those of FW and CSW media, but near to EW media (p<0.05). The hematocrit mean cell volume decreased but mean cell hemoglobin concentration, osmolarity and levels of plasma cortisol were increased from FW media to CSW media (p<0.05). The hemoglobin concentration (Hb), the amount of hemoglobin per erythrocyte, red and white blood cells count did not change (p>0.05). However, the results showed that the above parameters in fish fingerlings did not return to initial values in the new environment and then physiological changes happened.

Keywords: *Acipenser gueldenstaedtii*, Hematological parameters, Ion, Cortisol, Osmolarity

1-Caspian Sea Ecology Research Center, P. O. Box: 961, Farah Abad, Sari, Iran.
2- Department of engineering, Islamic Azad University, Sari branch, Sari, Iran.
*Corresponding author’s email: Smv_Farabi@Hotmail.com
Introduction

The Russian Sturgeon, *Acipenser gueldenstaedtii* is found in Iranian coastal waters from west to east (Astara River to Gorgan River) as reported by Abbasi et al., (1999) and Kiabi et al., (1999). Access to many rivers is now restricted by reduced water flow, river fragmentation, irrigation canals and pollution.

Most sturgeons are euryhaline, breeding in fresh water but spending most of their lives in the sea (Ta’ati et al., 2011). Some sturgeons, such as *Acipenser fulvescens* of Great Lakes and the paddlefishes of Mississippi basin, are confined to fresh water. The ability to live in sea water must have been acquired independently by the sturgeons but as far as it is known, fishes maintain similar blood concentrations equivalent to about 30% in both sea water and fresh water (potts and Rudy, 1972). Their activities differ among the organs and tissues of freshwater and marine fish (Wdzieczak et al., 1982), depending on feeding behaviour (Radi and Matkovic, 1988) and environmental factors (Winston and Di Giulio, 1991; Roche and Boge, 1996). Therefore, one of the important physiological changes in fish is their acclimation and survival at different degrees of salinity (Farabi et al., 2007; Farabi et al., 2009).

Some aspects of these osmoregulatory processes (plasma osmolarity, Na⁺, K⁺, Mg²⁺,Ca²⁺ concentrations, cortisol level, changes of gills, kidneys and thyroid gland) have been previously studied in several sturgeon species: in *Acipenser gueldenstaedtii*, *A. stellatus*, *Huso huso* from North and Middle parts of the Caspian Sea (Krayushkina, 1974; Krayushkina et al., 1996; Krayushkina and Semenova, 2006), in *A. transmontanus* (McEnroe and Cech, 1985), in *A. naccari* (Cataldi et al., 1995, 1998; Sanchez de Lamadrid et al., 2000), in *A. bravirostrum* and *A. oxyrhynchus* (Krayushkina, 1998; Krayushkina, et al., 2001), in *A. persicus* (Jabbarzadeh et al, 2000; Kazemi et al, 2003; Rad Sadeghi et al., 2009), in *Huso huso* and *A. nudiventris* from Southern parts of the Caspian Sea (Farabi et al., 2007 and 2009). The purpose of the present study was the determination of initial salinity tolerance and ion-osmotic parameters in *A. gueldenstaedtii* fingerlings (different age and size) at the time of releasing to the natural environment from Southern parts of the Caspian Sea.

Materials and methods

Fish were sampled from the fish hatchery center of Shaheed Marjani in the southern part of the Caspian Sea. The experiments were carried out at Caspian Sea Ecology Research Center located in Sari city. The juveniles used in this experiment comprised of different age and size after starting feeding (Table 1). All treatments had three replications with 30 fingerlings. The primary objectives of this study were to determine the early tolerance of Russian Sturgeon juveniles to different salinities: estuary water (EW: 9.5‰) and the Caspian Sea water (CSW: 12.5‰) with the effects of age and size. Juveniles were transferred directly from freshwater (FW: <0.5‰) to saline water (EW and CSW), using FW as control. Juveniles were not fed throughout the experimental period.
Survival of juveniles (JS) was estimated by recording the number of dead fish at 3, 6, 12, 24, 48, 72, 120, 144 and 168 hours during the experimental period (Table 1). At the initiation of each experimental period, the total length (TL) and weight (TW) of fish were measured by a calibrated board (±1mm) and digital balance (±0.1g), respectively. The condition factor (cf) was computed by Fulton’s index (Riker, 1975): \(cf = \frac{W \times 100}{L^3} \). If juvenile survival was above 50% in each group at the end of each experimental period after 168h, blood samples were drawn from the surviving individuals by cutting peduncles with a heparinized micro-capillary tube.

Red blood cells (RBC), white blood cells (WBC), hematocrit (Hct) and hemoglobin concentration (Hb) were recorded in each group at the end of each experimental period after 168h. The plasma samples were extracted using centrifuge (Hettich-D7200 Tuttlingen: Germany) at 453.6 g for 5min in a clinical centrifuge (Hettich-D7200 Tuttlingen: Germany) for Hct. Globular counting was performed by microscope and haemocytometers (standard Neubauer cell counting chamber) over cells suspended in Rees-Escher’s solution. Total hemoglobin concentration (Hb) was measured using the cyanmethemoglobin method with spectrophotometry (CECIL- CE1020: Germany) at 540 nm; mean cell volume (MCV) was computed as \(MCV = Hct \times 10 \times RBC^{-1} \), mean cell hemoglobin concentration (MCHC) as \(MCHC = Hb \times 100 \times Hct^{-1} \), and the amount of hemoglobin per erythrocyte (MCH) as \(MCH = Hb \times 10 \times RBC^{-1} \), (Ameri Mahabadi, 1999; Blaxhall and Daisley, 1973). Plasma osmolarity was measured using the cryoscopy method by an osmometer (Roebing Nr.9610003.Type 13: Germany). Sodium and potassium concentrations were determined with flame photometer (Corning 405C: IRI); magnesium and calcium concentrations were measured with an absorption spectrophotometer (UNICO 3115233: USA). Plasma cortisol was assayed on a competitive enzyme immunoassay (Stat

Table 1: Juveniles' A. gueldenstaedtii in different age and size at the time of releasing to natural environment

<table>
<thead>
<tr>
<th>Groups</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(days)</td>
<td>35</td>
<td>35</td>
<td>50</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>2.78±0.15</td>
<td>3.49±0.27</td>
<td>6.07±0.61</td>
<td>8.65±0.77</td>
<td>12.53±1.88</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>8±0.47</td>
<td>8.61±0.26</td>
<td>11.16±0.59</td>
<td>12.66±0.57</td>
<td>14.18±0.66</td>
</tr>
</tbody>
</table>

Note: The values are means±SD. and different superscript letters within each row are significantly different (p<0.01)
fax – Avernest, 330plus: USA). This test was used with automatic instrument for ELISA kits on microplate. The water for the test was supplied from Caspian Sea offshore as well as the Tajan estuary. Water salinity was measured by a salinimeter (Electrosolemer, GM-65M: Russia). Every experimental tank was well aerated by using an aerator. The experimental tanks were maintained at room temperature (20±1°C) and their water was replaced every 12 h to prevent accumulation of ammonia and other metabolites. The differences in parameters were tested for significance by a one-way analysis of variance (ANOVA) using SPSS.V10. Subsequent significances between groups were delineated by Duncan’s test. A value of \(P<0.01 \) or \(P<0.05 \) were taken as the significance level.

Results

The survival of juveniles was higher than 50% in all groups (different age and size) in EW and \(C_SW \) media with 168 hours exposure. The survival increased with the increment of age and size of fish after their transfer to EW and \(C_SW \) for 168 hours exposure time (Figure 2). The FW juveniles of *A. gueldenstaedtii* with different sizes and ages had a blood Hct of 32.64±0.34%, an average plasma osmolarity of 243.96±0.78 mOsm/l, and plasma ion concentrations of 124.28±0.35 mEq/l for \(Na^+ \), 1.77±0.01 mEq/l for \(K^+ \), 4.91±0.01 mEq/l for \(Ca^{2+} \) and 0.62±0.01 mEq/l for \(Mg^{2+} \) (Table 2 and 3). At 168 hours after the transfer of FW fish to different salinities (EW and \(C_SW \)), plasma osmolarity, ion concentration, MCHC, plasma cortisol levels had increased and Hct, Hb, MCV had decreased significantly (\(p<0.05 \)) (Table 2 and 3). The ion concentrations in blood plasma as well as the three media showed significant differences (\(p<0.01 \)), (Table 3). There were no significant differences in ion plasma concentrations among different age and size groups in different media (FW, EW and \(C_SW \)), (\(p<0.05 \)), (Table 3). Sodium concentration in plasma was higher than in FW and EW, but it was lower than in \(C_SW \) (Table 3). The potassium concentrations in plasma were higher than in FW, but it was lower than in EW and \(C_SW \) (Table 3). The calcium concentrations in plasma were higher than in FW and EW but, it was lower than in \(C_SW \) (Table 3). The magnesium concentrations in plasma were lower than in FW, EW and \(C_SW \) (Table 3). The significant differences of osmolarity has been shown between three experimental media and blood plasma (\(p<0.01 \)), (Table 2). The blood plasma osmolarity of fish acclimated to FW was higher than the osmolarity of corresponding media, but it was lower than media of EW and \(C_SW \) (Table 2). Therefore, the juvenile’s *A. gueldenstaedtii* were hypertonic in FW, while in FW and \(C_SW \) they were hypotonic.
Figure 1: Comparative condition factor (CF) of juvenile *A. gueldenstaedtii* in different size/age at the start of test (The letters have shown significant difference: *p* < 0.05).

Figure 2: Survival of juvenile *A. gueldenstaedtii* in different size/age groups and different media (FW:<0.5‰; EW: 9.5‰; CSW: 12.5‰) for 168 hours exposure (N=30, 3 replicates)
Table 2: Hematological parameters, concentration of cortisol and osmolarity in blood plasma of juvenile *A. gueldenstaedtii* after acclimation for 168 hours to different media (FW: < 0.5‰; EW: 9.5‰; CW: 12.5‰) (Means ± SD)

<table>
<thead>
<tr>
<th>Juvenile's group: n=10</th>
<th>Hct</th>
<th>RBC</th>
<th>WBC</th>
<th>Hb</th>
<th>MCV</th>
<th>MCH</th>
<th>MCHC</th>
<th>Cortisol</th>
<th>Osmolarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>In FW: < 0.5‰ and Osmolarity: 5±2 mOsm/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. 3.5days</td>
<td>32.8±1.55</td>
<td>626±38.35</td>
<td>14.5±3.44</td>
<td>5.3±0.85</td>
<td>254±1.13</td>
<td>84.3±9.37</td>
<td>16.1±2.04</td>
<td>19.5±1.77</td>
<td>244±4.01</td>
</tr>
<tr>
<td>II. 3.5days</td>
<td>32.5±1.18</td>
<td>623±38.68</td>
<td>14.2±2.19</td>
<td>5.3±0.57</td>
<td>522±1.63</td>
<td>85.5±5.31</td>
<td>16.4±1.24</td>
<td>19.7±2.17</td>
<td>243±5.6</td>
</tr>
<tr>
<td>III. 50days</td>
<td>31.7±0.09</td>
<td>623±56.83</td>
<td>14.2±2.89</td>
<td>5.2±0.76</td>
<td>535±2.26</td>
<td>86.3±6.08</td>
<td>16.2±1.93</td>
<td>19.5±1.86</td>
<td>243±3.13</td>
</tr>
<tr>
<td>IV. 50days</td>
<td>32.6±1.31</td>
<td>639±80.82</td>
<td>14.2±2.74</td>
<td>5.3±0.39</td>
<td>508±4.35</td>
<td>84.2±5.74</td>
<td>16.3±1.78</td>
<td>19.3±1.17</td>
<td>244±2.54</td>
</tr>
<tr>
<td>V. 65days</td>
<td>32.5±0.97</td>
<td>635±66.7</td>
<td>14.2±2.29</td>
<td>5.3±0.39</td>
<td>516±3.78</td>
<td>85.7±4.26</td>
<td>16.4±1.75</td>
<td>19.1±1.66</td>
<td>244±8.16</td>
</tr>
</tbody>
</table>

In EW: 9.5‰ and Osmolarity: 297.8±5.89 mOsm/l

<table>
<thead>
<tr>
<th>Juvenile's group: n=10</th>
<th>Hct</th>
<th>RBC</th>
<th>WBC</th>
<th>Hb</th>
<th>MCV</th>
<th>MCH</th>
<th>MCHC</th>
<th>Cortisol</th>
<th>Osmolarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>In FW: < 0.5‰ and Osmolarity: 407±2.92 mOsm/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. 3.5days</td>
<td>29.9±1.17</td>
<td>620±44.72</td>
<td>14.1±3.24</td>
<td>5.2±0.79</td>
<td>483±21.49</td>
<td>84.9±9.72</td>
<td>17.6±2.46</td>
<td>32.1±2.93</td>
<td>280±3.24</td>
</tr>
<tr>
<td>II. 3.5days</td>
<td>29.2±1.31</td>
<td>611±25.14</td>
<td>14.1±2.51</td>
<td>5.3±0.71</td>
<td>478±16.46</td>
<td>86.9±7.54</td>
<td>18.3±1.78</td>
<td>32.0±4.43</td>
<td>282±5.08</td>
</tr>
<tr>
<td>III. 50days</td>
<td>30.1±1.66</td>
<td>620±69.44</td>
<td>14.2±1.16</td>
<td>5.3±0.08</td>
<td>488±32.28</td>
<td>86.7±4.47</td>
<td>17.8±1.39</td>
<td>32.2±4.35</td>
<td>285±7.5</td>
</tr>
<tr>
<td>IV. 50days</td>
<td>30.2±0.99</td>
<td>628±56.92</td>
<td>14.2±2.39</td>
<td>5.2±0.75</td>
<td>483±32.26</td>
<td>83.4±5.69</td>
<td>17.3±2.08</td>
<td>32.4±3.37</td>
<td>283±9.37</td>
</tr>
<tr>
<td>V. 65days</td>
<td>29.6±0.97</td>
<td>632±68.52</td>
<td>14.3±2.11</td>
<td>5.3±0.87</td>
<td>471±31.99</td>
<td>84.1±7.94</td>
<td>17.9±2.48</td>
<td>32.1±2.77</td>
<td>282±14.13</td>
</tr>
</tbody>
</table>

Table 3: Ion concentrations in blood plasma of juvenile *A. gueldenstaedtii* and the exposure water after fish acclimation to different salinity for 168 hours. (Means ± SD)

<table>
<thead>
<tr>
<th>Media</th>
<th>Fresh Water: <0.5 ‰</th>
<th>Estuary Water: 9.5 ‰</th>
<th>Caspian Sea Water: 12.5 ‰</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na⁺</td>
<td>K⁺</td>
<td>Ca²⁺</td>
</tr>
<tr>
<td>Juvenile's group: n=10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. 3.5days</td>
<td>124.9±1.27</td>
<td>1.79±0.04</td>
<td>4.91±0.05</td>
</tr>
<tr>
<td>II. 3.5days</td>
<td>124±2.86</td>
<td>1.77±0.06</td>
<td>4.92±0.07</td>
</tr>
<tr>
<td>III. 50days</td>
<td>124.1±1.79</td>
<td>1.76±0.03</td>
<td>4.91±0.08</td>
</tr>
<tr>
<td>IV. 50days</td>
<td>124.1±3.11</td>
<td>1.77±0.06</td>
<td>4.94±0.07</td>
</tr>
<tr>
<td>V. 65days</td>
<td>124.1±3.11</td>
<td>1.76±0.05</td>
<td>4.94±0.11</td>
</tr>
<tr>
<td>Average:</td>
<td>124±3.35</td>
<td>1.77±0.01</td>
<td>4.91±0.01</td>
</tr>
<tr>
<td>Water: n=5</td>
<td>28.8±2.86</td>
<td>0.39±0.03</td>
<td>2.04±0.15</td>
</tr>
</tbody>
</table>

Note: The values with different letter (between Average groups and water) within each column and first row (different media) have shown significantly difference (p<0.01, n= sample size)
Discussion

The main goal of sturgeon cultivation in the southern part of the Caspian Sea is producing fingerlings for restocking natural waters. The fingerling sturgeon needs to develop an ion-osmoregulatory mechanism to survive successfully in the time of migration from river to the sea. Fish cells must be in ion and osmotic equilibrium with environments. The environmental change can be considered as a potential source of stress and physiological changes (Donaldson, 1981).

The juvenile Russian sturgeon supported blood plasma osmolarity higher than FW and approximately similar to EW osmolarity, but lower than C_{SW} osmolarity (Table 2). The comparative results of this investigation in different salinities were similar to studies of *H. huso* and *A. nudiventeris* fingerlings in the southern part of the Caspian Sea (Farabi et al., 2007, 2009). But in this survey there were no statistically significant differences in size and age of *A. gueldenstaedtii* juveniles (p>0.05). Also, the survival rate increased with increase in size and age (Farabi et al., 2007, 2009).

The ranking descending of ion plasma concentrations including sodium, calcium, potassium and magnesium in different media were similar to prior studies (Krayushkina, 1974; Krayushkina et al., 1996; Krayushkina and Semenova, 2006; Farabi et al., 2007, 2009). The potassium, calcium, magnesium and sodium blood concentrations gradually increased statistically significant from FW to EW and C_{SW} (p<0.05), (Table 3). Also, the results showed that the juvenile Russian sturgeon regulated its blood ions concentration at lower than Levels of marine and brackish water teleost (Urist and Van de Putte, 1967; Nespolo and Rosenmann, 2002; Farabi et al., 2007 and 2009), (Table 2).

However, the results showed that the above parameters in *A. gueldenstaedtii* juvenile fingerlings did not return to initial values in the new environment and physiological changes happened. So, Acipenser gueldenstaedtii are able to regulate plasma ion and osmotic in the age of more than 35 days and weight of more than 2.78±0.15 g.

Acknowledgements

Authors are grateful to all our colleagues in the Shaheed Marjani Sturgeon Propagation Center and the Caspian Sea Ecology Research center. Also our special appreciations go to Prof. Krayushkina and Dr. Hajimoradloo for their useful guidelines.

References

Biochemical Physiology, A, 121A (4), 351-354.

Comparative Physiology Biochemical, Systemic, and Environmental, (7), 527-533.

تحمل اولیه شوری و پارامترهای یونی-اسمزی در تاسماهی روسي جوان

Acipenser gueldenstaedtii, Brandt, 1833

سید محمد وحید فارابی، شعبان نجف پور، مریم قیاسی، حامد صمدی

چکیده

تحمل شوری و نویانی تنظیم عوامل خونی و مواد معنی در تاسماهی روسي با اندازه و سنین مختلف در آب شیرین (شوری: 0%<\%\%<5.5) معمول بررسی قرار گرفت. ماهیان مسئول از آب شیرین به آب معمول و در زمان انتقال داده شدند. یک‌روپی احتمالی فرآیند تنظیم یونی-اسمزی روی برخی از شاخص‌های وابسته در یک‌سی و ساعت تحمیل شوری ماهیان مورد بررسی قرار گرفت. موارد و میزان آب معمول و دریا تنها در آب شیرین. درصد بالا و تحمیل شوری با افزایش سن و اندازه ماهی افزایش یافت. مکانیزم عملکردی هموگلاسی اسپزی و یونی در همه گروه‌ها مشابه بود (p<0.05). اما نسبت به شرایط محیطی مختلف، مقاومت بود (p<0.05). افزایش محیطی در شرایط محیطی مختلف مشاهده گردید (p>0.05). غلظت یون‌های سدیم، نتایم و کلسیم با بازدارنده آن ها در آب شیرین، بیشتر و در آب دریا کمتر بود (p<0.05). غلظت یون‌های فلوریسی در آب شیرین و دریا کمتر و زیادتر بود (p<0.05). سطح تفاوتِ دریا افزایش یافت. افزایش غلظت حجم سلولی کاهش یافت، اما متوسط غلظت هموگلاسی سلولی، اسمولاریت و سطوح کورتئزول بالا می‌آید. افزایش حجم سلولی به آب دریا افزایش یافته است (p<0.05). غلظت هموگلاسی، مقادیر هموگلاسی در افزایش قرار یافت و سطح تفاوت دریا افزایش یافته است (p<0.05). یک‌روپی تناوب بین پایان به چه ماهیان در محیط جدید به سطوح مقادیر اولیه با نگاشت و در پی آن تغییرات زیستولوژیک اتفاق افتاد.

واژگان کلیدی: تاسماهی روسي، پارامترهای همانولوژی، یون، کورتئزول، اسمولاریت

1. پژوهشکده اکولوژی دریای خزر، سندوق بستی ۱۹۴۱، فرج آباد، ساري، مازندران،
2. دانشگاه آزاد اسلامی، دانشکده مهندسی، ساري، مازندران، ايران
smv_Farabi@hotmail.com*