Application of microsatellite markers to determine populations of the Persian sturgeon (*Acipenser persicus*) in the South of Caspian Sea

Chakmehdouz Ghasemi F.*; Pourkazemi M.; Tavakolli M.; Yarmohammadi M.; Hassanzadeh Saber M.; Baradaran Noveiri S.

Received: November 2010 Accepted: April 2011

Abstract
The objective of this study was to analyse the population genetic structure of the Persian sturgeon (*Acipenser persicus*) in Sefidrud and Gorganrud rivers watershed based on the characterization of microsatellite markers during 2006 – 2008. 100 samples of Persian sturgeon were collected from two regions. Four microsatellite loci (*Ls*68, *Spl*168, *Spl*173 and *Afu*68) were analyzed for the molecular characterization of this species which resulted in polymorphic patterns. DNA bands were analysed using Biocapt and GenAlex software package. A total of 109 alleles were observed of which the maximum number of alleles (17) were found in *Spl*168 locus which belonged to sturgeons from Sefidrud river’s watershed and the minimum number of alleles (10) in *Ls*68 locus belonging to the sturgeons from Gorganrud river’s watershed. Results of microsatellite analysis revealed that the differences between samples of two regions were not statistically significant (p>0.05), neither for the average number of alleles per locus nor for observed heterozygosities. The calculated *F*_{st} and *R*_{st} between two regions was 0.07 and 0.17 showing that the genetic difference was significant (p< 0.01). Samples from Sefidrood river’s watershed in *Spl*173, *Afu*68 and *Spl*168 loci and samples of other regions in *Afu*68 and *Spl*168 loci were at Hardy-Weinberg equation. The genetic distance was calculated as 0.4 which represents a significant genetic difference between samples of two studied areas. In conclusion, this study suggests that the Persian sturgeons in two regions of the southern part of the Caspian Sea are genetically differentiated, therefore fisheries management of this unique stocks for restocking and conservation of gene pools is highly recommended.

Keywords: Persian sturgeon, *Acipenser persicus*, Caspian Sea, Microsatellite, Genetic structure, Population genetic
Introduction

Sturgeons are one of the oldest fishes existing from 200 million-years ago and being referred as live fossils by several authors (Grande and Bemis, 1996; Bemis et al., 1997). Recently, sturgeon populations in the Caspian Sea are endangered due to various factors, such as over-exploitation, habitat alternation, pollutions, barriers to migration and loss of spawning habitat. (Pourkazemi, 2006). Therefore all sturgeon species have been listed in the 1996 IUCN Red List assessment as an endangered species (Dugo et al., 2004; Pourkazemi, 2006). At present, 27 sturgeon species are found living throughout the world (Ustaoglu and Okumus, 2004), of which six species belonging to two genera (*Huso* and *Acipenser*), are found in the Caspian Sea and its drainage basin which provide the bulk of the world’s caviar yield today (Pourkazemi, 2006). In the recent years, *Acipenser persicus* has comprised the largest proportion of the total Iranian commercial catch (Moghim et al., 2006). This species is also artificially propagated in the Iranian hatcheries and the fingerlings are released into the rivers of the south Caspian Sea for restocking.

An understanding of the genetic diversity in aquatic organisms can be useful in stock conservation. Genetic diversity is important in both natural and cultural populations because it provides the necessary spectrum of genotypes for adaptive response to changing conditions and heterozygous individuals usually are superior to less heterozygous individuals in many economically important characteristics like growth, fertility and disease resistance (Beardmore et al., 1997). Sturgeon population genetic studies provide important information which can be used for management, sustainable use and conservation of the species concerned (Rosenthal et al., 2006). Among molecular markers, microsatellite methods are new techniques which are commonly applied for many commercially important aquatic species that can be examined by using samples harvested without endangering the life of the individual. Microsatellite markers were used to study sturgeon population structure and can also identify different brood stocks for management in hatcheries to conserve diversity and minimize inbreeding in artificial propagation (Norouzi et al., 2008). Pourkazemi (2001) and Shabani et al. (2006) studied mtDNA variation of *A. stellatus* populations in south Caspian Sea by RFLP method using ND 5/6 gene regions. They found low genetic variation among studied areas and mentioned that the RFLP method is not a powerful technique to determine genetic diversity sufficiently to fisheries management of this species. Safari et al. (2008) using microsatellite markers showed high level of variety of *A.nudiventris* between Ural River and samples from the southern part of the Caspian Sea. Following the results, they expressed there are two independent populations of this species, so conservation policy and restocking programs are necessary. Sturgeon family structure and relationships can easily be identified using microsatellite markers. Using these methods allows appropriate broodstock management both in
aquaculture and in sturgeon restocking programs (Rosenthal et al., 2006). In recent years, genetic researches have been limited to a few studies on the Caspian Sea sturgeon species using a variety of molecular markers (Rezvani, 1997; Pourkazemi et al., 1999; Shabani, 2005; Qasemi et al., 2006; Khoshkholgh, 2007; Norouzi et al., 2008; Safari et al., 2008) but despite the commercial importance of the Persian sturgeon, study on its genetic and population structure in south Caspian Sea is scarce and more studies are necessary. The goal of this study was to determine the genetic diversity population and provide a genetic background of this species for management in the southern part of the Caspian Sea using microsatellite DNA markers. It can also be applied for future genetic improvement and assessment of this species in hatcheries and to design suitable management guidelines for artificial breeding activities.

Materials and methods

Sample collection

A total of 100 fin clips of adult *Acipenser persicus* were collected from 2 regions including 50 samples from Sefidrud watershed and 50 samples from Gorganrud watershed (Fig. 1). For each sample, 2-3 cm caudal fin tissue was cut and kept in absolute ethanol and then transferred to the Genetic department of International Sturgeon Research Institute, Rasht, Iran.

![Sampling regions map](image)

Figure 1: Sampling regions map: Gorganrud watershed (■) and Sefidrud watershed (●)

Genomic DNA extraction

For each sample, approximately 50 mg of fin tissues was cut into small pieces and genomic DNA was extracted by standard SDS proteinase-K digestion, phenol: chloroform: isooamylalcohol extraction and ethanol precipitation as described by Hillis et al. (1996). The quantity of DNA was measured in 260 and 280 nm using UV-spectrophotometry method by Nanodrop (ND 1000 model) and the quality of the extracted DNA sample was checked by...
1% agarose gel electrophoresis. Purified DNA was stored at -20°C until use.

PCR profiles and primer sequences

In this study, we used 4 microsatellite loci: Ls68, Afu68 (May et al., 1997), Spl168 and Spl173 (McQuown et al., 2000) all of which produced polymorphic patterns. The PCR conditions, especially the annealing temperatures were optimized for each microsatellite loci to produce scorable amplification products (Table 1). The PCR was performed in a 20 µl reaction volume containing 100 ng of template DNA, 30 pmol of forward and reverse primer, 200 µm of dNTPs, 5 u / µl of *taq* DNA polymerase, 1 µl of 1.5 mM MgCl₂ and 2 µl of 10X reaction buffer (Table 2).

Table 1: Characteristics of 4 polymorphic microsatellite loci of *Acipenser persicus* used in this study

<table>
<thead>
<tr>
<th>Loci</th>
<th>Primer (5'-3')</th>
<th>Size (bp)</th>
<th>Annealing temp. (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls68</td>
<td>F- TTATTGCATGGTGTAGCTAAAC, R- AGCCTTACACACGCAATATC</td>
<td>198 – 264</td>
<td>60</td>
<td>May et al., 1997</td>
</tr>
<tr>
<td>Spl168</td>
<td>F- CACTGATTCGCTACAACCGT, R- AAGAGGACTTGTGAGCTCCGA</td>
<td>232 - 310</td>
<td>59</td>
<td>McQuown et al., 2000</td>
</tr>
<tr>
<td>Spl173</td>
<td>F- GGCTTTTGTCTGAAACGTCC, R- TGGTGTGTCTATTTAGGGCA</td>
<td>232 - 292</td>
<td>61</td>
<td>McQuown et al., 2000</td>
</tr>
<tr>
<td>Afu68</td>
<td>F- AACAATATGCAACTCAGCATAA, R- AGCCTTACACACGCAATATC</td>
<td>106 - 168</td>
<td>55</td>
<td>May et al., 1997</td>
</tr>
</tbody>
</table>

Table 2: Concentration and kind of materials used in this study

<table>
<thead>
<tr>
<th>Material</th>
<th>Concentration</th>
<th>Amount for 20 µl reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>100 ng</td>
<td>1 µl</td>
</tr>
<tr>
<td>PCR buffer</td>
<td>10 X</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTPs</td>
<td>10 mM</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>50 mM</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer (F)</td>
<td>30 pm</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer (R)</td>
<td>30 pm</td>
<td>1 µl</td>
</tr>
<tr>
<td>taq DNA polymerase</td>
<td>5 u / µl</td>
<td>0.2 µl</td>
</tr>
<tr>
<td>dH₂O</td>
<td>-</td>
<td>13.3 µl</td>
</tr>
</tbody>
</table>

PCR reactions were performed with an eppendorf thermal cycler (Mastercycler ep gradient, 96 plus, eppendorf, Germany) under the following conditions: initial denaturation of 5 min at 95 °C followed by 30 cycles of 30 s denaturation at 94 °C, 60 s at the respective annealing temperature, and 60 s extension at 72 °C, ending with 10 min at 72 °C as the elongation period.
Table 3: Variability of 4 microsatellite loci in two areas of the Persian sturgeon (A, number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; P, P-values of X^2 tests for Hardy-Weinberg equilibrium)

<table>
<thead>
<tr>
<th>Locus</th>
<th>Parameters</th>
<th>Sefidrud watershed</th>
<th>Gorganrud watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ls68$</td>
<td>A</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.670</td>
<td>0.520</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.840</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>1</td>
<td>0.950</td>
</tr>
<tr>
<td>$Spl168$</td>
<td>He</td>
<td>0.840</td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.095</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.708</td>
<td>0.710</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.880</td>
<td>0.860</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.1</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.250</td>
<td>0.500</td>
</tr>
<tr>
<td>$Spl173$</td>
<td>He</td>
<td>0.780</td>
<td>0.640</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.113</td>
<td>0.285</td>
</tr>
</tbody>
</table>

Average number of alleles per locus

| | 14.5 ± 2.64 | 12.75 ± 2.22 |

Average Ho

| | 0.66 ± 0.31 | 0.67 ± 0.21 |

Average He

| | 0.83 ± 0.04 | 0.80 ± 0.10 |

Gel electrophoresis and staining

The PCR products with a standard 100 bp DNA markers ladder (Fermentas) were separated by electrophoresis on 6% (w/v) denatured polyacrylamide gel (29:1 acrylamid: bis acrylamid; 1X TBE buffer) using a Hoefer gel electrophoresis system (Pharmacia-Biotech, USA). Gel run carried out at 120 V until the loading buffer reached the bottom of the plate. After electrophoresis, the gel was stained with silver nitrate protocol (Pourkazemi, 1996).

Microsatellite data analysis

Following polyacrylamid gel electrophoresis and silver nitrate staining, one or two clear bands were observed at each locus for each specimen. The bands representing alleles were manually scored based on their sizes. The recorded microsatellite genotypes were used as the input data for the GENALEX software (Peakall and Smouse, 2006). Allele and genotype frequencies, observed heterozygosity (Ho), expected heterozygosity (He) and test of deviations from Hardy-Weinberg equilibrium were calculated. Genetic distance between two areas was estimated using Nei standard
genetic distance index (Nei, 1972). Genetic differentiation between two areas was also evaluated by the calculation of pairwise estimates of F_{st} and R_{st} values. All calculations were conducted using the GENALEX version 6.

Results

Allele frequencies at all loci in both areas are shown in Table 3. Overall, 109 alleles resulted in 4 microsatellite loci in which the locus Spl168 presented the highest number of alleles (17) in Sefidrud watershed, while the locus Ls68 in Gorganrud watershed was the lowest (10). The average number of alleles per locus was 14.5 for samples of Sefidrud watershed and 12.75 for Gorganrud watershed. The average observed heterozygosities (H_o) were 0.66 and 0.67 in two regions, respectively. The differences between two regions were not statistically significant ($p > 0.05$), neither for the average number of alleles per locus nor for observed heterozigosities. Significant deviations from Hardy-Weinberg equilibrium at the locus level in two regions are shown in Table 4. Except Ls68 locus in Sefidrud region and Ls68 and Spl173 loci in Gorganrud region, the other loci in both regions were at Hardy-Weinberg equilibrium. The F_{st} (0.07) and R_{st} (0.17) values from pairwise comparisons were significant ($p < 0.01$), indicating that the populations of two regions were divergent from each other. The genetic distance computed by Nei (1972) was 0.4.

Table 4: Hardy-Weinberg equilibrium Test of 4 microsatellite loci in two areas of Persian sturgeon in this study

<table>
<thead>
<tr>
<th>Regions</th>
<th>Locus</th>
<th>DF</th>
<th>X^2(Chi Sq)</th>
<th>Level of significant</th>
<th>Probability of significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sefidrud watershed</td>
<td>Ls68</td>
<td>21</td>
<td>76.11</td>
<td>0.00</td>
<td>●●●</td>
</tr>
<tr>
<td></td>
<td>Spl168</td>
<td>45</td>
<td>57.83</td>
<td>0.095</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Afu68</td>
<td>10</td>
<td>15.55</td>
<td>0.113</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Spl173</td>
<td>22</td>
<td>57.51</td>
<td>0.1</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Ls68</td>
<td>15</td>
<td>52.78</td>
<td>0.000</td>
<td>●●●</td>
</tr>
<tr>
<td>Gorganrud watershed</td>
<td>Spl168</td>
<td>36</td>
<td>38.37</td>
<td>0.363</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Afu68</td>
<td>6</td>
<td>7.41</td>
<td>0.285</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Spl173</td>
<td>55</td>
<td>83.65</td>
<td>0.008</td>
<td>●●</td>
</tr>
</tbody>
</table>

$p \leq 0.05$ ●, $p \leq 0.001$ ●●●, ns: no significant
Discussion

Anthropogenic influence and other factors caused the dramatical decrease of sturgeon stocks such as *Acipenser persicus* in the Caspian Sea. This required the development of conservation programs and genetic studies to distinguish different populations. Among molecular methods, microsatellite markers allow the evaluation of intraspecific genetic diversity and offer the possibility to distinguish differences between populations due to their high level of allelic variation (Dudu, et al., 2008). For this purpose, we evaluated the genetic diversity in Persian sturgeon from two regions in the southern part of the Caspian Sea, using microsatellite markers. Polymorphic patterns produced by primers in the present study confirmed that the microsatellite markers used are suitable for genetic diversity studies. According to the results there are no significant differences between samples of the two regions (p>0.05) neither for the average number of alleles per locus nor for observed heterozygosities. The high level of heterozygosity in this species can be attributed to use of most breeders in hatcheries and fingerlings released into the south Caspian Sea Rivers (Sefidrud and Gorganrud rivers) for restocking. However regular monitoring of genetic variability among the offspring of each region is essential to avoid the loss of current polymorphism due to inbreeding and outbreeding problems.

The value of F_{st} and R_{st} based on ANOVA test is a useful measure of genetic differentiation among populations (Ballox and Lugan-Moulin, 2002). Previous research has showed that low levels of F_{st} between samples of *A. stellatus* in four fishery regions are significant (Norouzi et al., 2008). In this study, the F_{st} was low (0.07) and R_{st} value was 0.17 but F_{st} and R_{st} were significant between samples of two regions (p<0.01). Although the lowest value of F_{st} can be considered as an important genetic difference between populations (Wright, 1978; Hartl and Clark, 1997). According to decisions of CITES (Convention on International Trade in Endangered Species), setting annual quotas of caviar in the Caspian Sea is based on sturgeon stock assessment. In the future, it is possible to determine quotas of caviar based on molecular genetic methods for the identification of sturgeon populations. The data presented here suggests that the populations of these two studied areas are genetically differentiated and do not represent a single panmictic population. The genetic distance value based on Nei, (1972) for conspecific populations averaged 0.05 (range: 0.002-0.07) and for congeneric species averaged 0.30 (range: 0.03-0.61). The distance value obtained in this study (0.4) falls within the average value of congeners and indicated that genetic differences among these two studied populations is pronounced (p<0.01).

Samples of the two studied areas were mostly of loci at Hardy-Weinberg equilibrium test. The significant differences from Hardy-Weinberg equilibrium could be explained either by sample bias, migration, artificial breeding or the presence of null alleles. The inheritance of microsatellite null alleles
have been reported by most of researchers
(Pyatskowit et al., 2001; Welsh et al.,
2003; Rodzen et al., 2004; Zhao et al.,
2005; Norouzi et al., 2008). It may also be
related to not using species specific
primers and the most important reason,
sampling from mixtures of migrating
population and sampling methodology
(McQuown et al., 2003). To detect such a
population structure, samples must be
collected from spawning sites. Samples
from non-spawning adults may reflect
mixtures of migrating population
(McQuown et al., 2003).

The data generated in this study
showed that populations of A.persicus in
two studied areas in the southern part of
the Caspian Sea are genetically
differentiated. Accurate species
identification is the first step in each
successful conservation program. This
information can be applied for future
genetic improvement and the assessment
of this species in hatcheries. We strongly
suggest special consideration on
conservation policy and restocking
program of this species in Sefidrud and
Gorganrud.

Acknowledgments
We thank M.R. Noruzfashkhami, head of
the Genetic department of Dr. Dadman
International Sturgeon Research Institute.
Special thanks to: Leila Azizzadeh for her
laboratory help, Mr. Sohrab Dejandian and
Mr. Mohammad Khoshghalb and Mr., Ali
Hallajian for their help in collecting the
samples.

References

The estimate of population
differentiation with microsatellite
markers. *Molecular Ecology*, 11, 155-
165.

Beardmore, A.L., Mair, C.G. and Lewis,
C.G., 1997. Biodiversity in aquatic

Bemis, W.E., Findeis, E.K. and Grande,

Microsatellite variation in marine,
freshwater and anadromous fishes
compared with other animals. *Journal
of Fish Biology*, 56, 461-473.

Dudu, A., Georgescu, S. E., Luca, C.,
Microsatellite DNA variation in the
Black Sea Stellate sturgeon (*Acipenser
stellatus*). *Lucrari stiintifice Zootehnici
si Biotehnologii*, 41(1), 78-82.

Dugo, M. A., Kreiser, B. R., Ross, S. T.,
Slack, W. T., Heise, R. J. and Bowen,
B. R., 2004. Conservation and
management implications of fine-scale
genetic structure of Gulf sturgeon in
the Pascagoula River, Mississippi.
Journal of Applied Ichthyology, 20,
243-251.

Interrelationships of Acipenseriformes with
comments on “Chondrostei”. IN:
Interrelationships of Fishes. M.L.J.
Stiassny, L.R. Parenti and G.D.
Johnson (eds). Academic Press, San

Principles of Population Genetics, 3th
Massachusetts, USA. 542 pp.

Moghim, M., Kor, D., Tavakolieshkhalak, M. and

Pourkazemi, M. and Skibinski, D. O. F., 2001. Allozyme and mtDNA study on population structure of stellate sturgeon (\textit{Acipenser stellatus}) in Iranian coastlines of the south Caspian Sea. 4th International Symposium on

Shabani, A., Pourkazemi, M. and Rezvani, S., 2006. [Study of mtDNA variation of stellate sturgeon (Acipenser stellatus) population from the north (Volga River) and the south (Sefidrud River) Caspian Sea using RFLP analysis of PCR Amplified ND 5/6 gene regions]. Journal of Agriculture Sciences and Natural Resources, 12(6), 195-204. (in Persian)

کاربرد مارکر‌های مایکروستاتیت جهت شناسایی جمعیت‌های تاسماهای ایرانی

سواحل جنوبی دریای خزر (Acipenser persicus)

فريدون چکم‌دوژ دوز قاسمی*، محمد بور کاظمی، محمود توکلی، مهتاب پارمحمدی، محمد حسن زاده صابر، شهرل بادران نوری

چکیده

ساختار زننکی تاسماهای ایرانی (Acipenser persicus) حوضه آبیزی رودخانه‌های میانه و رگ‌های سواحل جنوبی (Microsatellite) دریای خزر طی گسترش ارزیاری ذخایر تاسماهای سالهای 1387–1395 با استفاده از روش مزیازه‌واره (مورد) بررسی قرار گرفت. بدین منظور تعداد 50 نمونه از هر منطقه (جمعه 101 نمونه) جمع آوری و به آزمایشگاه زننکی مولکولی استناد تحقیقات بین المللی ماهان خاویاری دکتر دادمان (رشت) متقرب گردید. پس از استخراج DNA زننکی، از 4 جفت آغازگر (Primer) زننکی استفاده شد که همگی تولید باندهای چند شبکی (پلی مورف) نمونه‌ای دارند. در مجموع 109 آل مشاهده شد که بیشترین تعداد 284 عضو (مربع) در حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, از مشاهده شد. در حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168, نمونه‌های حوزه آبیزی رودخانه سفری و در کمترین تعداد 32 عضو (مربع) در گروه‌های Spl168, Spl168, در تعادل H2O و در گروه‌های Spl168, Spl168.