The relationship between biotic factors and the content of chosen heavy metals (Zn, Fe, Cu and Mn) in six wild freshwater fish species collected from two lakes (Łańskie and Pluszne) located in northeastern Poland

Łuczyńska J.1*; Tońska E.1; Paszczyk B.1; Łuczyński M.J.2

Received: March 2017 Accepted: June 2017

Abstract
The effect of biotic factors such as species, condition factor, body weight and total length of fish on concentrations of iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) in organs of Rutilus rutilus (L.), Abramis brama (L.), Coregonus lavaretus (L.), Esox lucius (L.), Perca fluviatilis (L.) and Tinca tinca (L.) from reservoirs of Warmia and Mazury region (northeastern Poland) were determined. Differences in the content of metals were observed between species (p≤0.05). Some metals demonstrated specific affinity for particular tissues. Lower concentrations of metals were found in muscles and ranged as follows: Zn 3.427-9.950, Fe 1.297-2.550, Cu 0.133-0.279 and Mn 0.050-0.162 (expressed mg kg⁻¹ wet weight). The highest levels of Fe (33.49-123.6) and Cu (3.994-27.14) (except for copper in perch) found in the liver (p≤0.05) was related to detoxification, whereas high concentrations of Mn (1.366-5.113) and Zn (15.91-135.0)(except for Zn in tench) in gills may be associated with excretion processes or uptake (p≤0.05). The two organs (gills and liver) may be used as bioindicators of metal contamination of aquatic environments. Studies on the size and condition factor dependency of heavy metal concentrations have showed that, although the relationship exists, in most cases it was not statistically significant for organs. Metal Pollution Index (MPI) in organs of fish examined was 1.503<MPI<3.575. The daily per capita consumption of 34 g of fish examined showed 0.317-0.624% of Fe, 1.174-3.408% of Zn, 0.455-0.955% of Cu and 0.085-0.278% of Mn of the RDA reference dose.

Keywords: Heavy metals, Freshwater fish, Condition factor, Body weight, Total length, Mazurian Lake District

1-Chair of Commodity and Food Analysis, University of Warmia and Mazury in Olsztyn, Poland
2-Department of Ichthyology the Stanisław Sakowicz, Inland Fisheries Institute in Olsztyn, Poland
*Corresponding author's Email: jlucz@uwm.edu.pl
Introduction

Fish inhabit different types of waters: streams, rivers, seas, lakes, ponds etc. (Jezierska and Witeska, 2001). Phytophagous fish belong to consumers at the first trophic level, while fish feeding on plankton and small bottom fauna constitute the 2nd order of the food chain. On the other hand, predatory fish represent the next link in the inland waters (Szczerbowski, 1995). According to Moiseenko et al. (2005), fish accumulate microelements in their whole lifespan, reflecting the hydrochemical conditions and contamination of water bodies. Zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn) are essential micronutrients for humans and other living organisms, including fish and aquatic animals. They play a key role in the metabolism of organs and tissues and in the maintenance of cellular functions (Uauy et al., 1998; Shenkin, 2006; Nadadur et al., 2008; Santamaria, 2008; Angelova et al., 2011; Azaman et al., 2015). These elements, as well as essential elements, are also numbered among heavy metals. Sándor et al. (2011) showed that essentiality and toxicity of trace metals in organisms depend on the concentration of the metal; below a certain level they could be considered as essential for biochemical processes, but in the case of a high accumulation in organisms, intoxication may occur. Generally, the bioaccumulation of metals depends on biotic (species, body dimensions and mass, fish age and sex, metabolism, feeding type and position in the trophic pyramid) and abiotic factors (distribution of metals in its environment, water temperature, pH, salinity and interactions with other metals) (Jezierska and Witeska, 2006; Jakinska et al., 2011; Järv et al., 2013; Merciai et al., 2014; Zeitoun and Mehana, 2014; Govind and Madhuri, 2014; Pokorny et al., 2015; Kalisinska et al., 2017). According to Jezierska and Witeska (2001), the higher the metal concentration in the environment, the more may be taken up and accumulated by fish. Pandey and Madhuri (2014) reported that heavy metals can enter from contaminated waters into the fish body by different routes. Most research confirms that fish muscles usually contain lower levels of metals than gills, liver and kidneys (Farkas et al., 2000; Bochenek et al., 2008; Amundsen et al., 2011; Ebahimpour et al., 2011; Matasin et al., 2012; Zubcov et al., 2012; Bat et al., 2015; Jačimović et al., 2015; Kalkan et al., 2015; Đikanović et al., 2016; Magu et al., 2016). It is known that fish organs may be used as bioindicators of metal contamination of aquatic systems (Fatima et al., 2014; Authman et al., 2015; Awheda et al., 2015; Salamat et al., 2015; Yancheva et al., 2015; Abdel-Khalek et al., 2016; Nwabunike, 2016).

One of the other indicators belonging to a morphological parameters is condition factor (FCF) which can indicate changes in the fish’s health state caused by environmental contaminants or stress (Parente and Hauser-Davis, 2013), Yancheva et al. (2015) reported
that fish are suitable indicators for impaired water quality as they have different size, occupy different trophic levels and are long-living and mobile. Consequently, the aim of this study was to evaluate whether the content of metals related to fish species, different organs (muscles, liver and gills) and the factor condition, body weight or total length of fish from two lakes in Mazurian Lake District (Pluszne and Łańskie) connected with to Łyna River, which are used for recreational purposes. At the same time they attempted to determine whether the fish can be a good indicator of pollution of the aquatic environment, although today the water has a good chemical status.

Materials and methods
A total of 71 specimens of freshwater fish species: roach, *Rutilus rutilus* (L.); bream, *Abramis brama* (L.); whitefish, *Coregonus lavaretus* (L.); pike, *Esox lucius* (L.); Eurasian perch, *Perca fluviatilis* (L.) and tench, *Tinca tinca* (L.) were analyzed (Table 3). The fish were caught from two lakes in Mazurian Lake District (Pluszne and Łańskie) (Fig. 1). These lakes are located next to each other and from Lake Pluszne in the south-east part flows the Poplusz River, which connects to the Łyna River and Lake Łańskie. Fishes from both lakes might migrate and populations might mix. Analysis of the results of priority substances and other polluting substances including Zn, Fe, Cu and Mn showed that none of the chemical indicators exceeded the established limits for exposure and the study found the water body in good chemical status. Therefore, the pollution of lakes examined by elements was similar. The south-western part of the basin of Lake Łańskie was dominated by fields and the forests in the north-east, whereas the total area of the basin of Lake Pluszne is surrounded by the forests. Basic morphometric data on Łańskie and Pluszne Lakes are given in Table 1. All fish samples were collected on the same day. Shortly after catching the fish were euthanized and the body weight and total length of each fish were measured (Table 3). Liver, gills and muscles were sampled from each fish. Muscle tissue was dissected from the dorsal part. The samples were kept in polypropylene bags at -18°C until analysis.

Fulton’s condition factor (FCF)
The condition factor of fish was calculated using the Fulton’s condition factor (FCF) (Table 3).

\[\text{FCF} = 100 \times \frac{W}{L^3} \]

Where:
- \(W \) is the total body weight of fish (g), \(L \) is the total length of fish (cm).

Metal Pollution Index (MPI)
The MPI was determined using the equation by Usero *et al.* (1997) and Abdel-Khalek *et al.* (2016)

\[\text{MPI} = (M_1 \times M_2 \times M_3 \times \ldots \times M_n)^{1/n} \]

Where (Table 3), \(M_n \) is the concentration of metal \(n \) (mg kg\(^{-1}\) wet weight) in a certain tissue.

For analysis of Fe, Zn, Cu and Mn content, samples of muscle tissue (±0.0001 g) in duplicate were dried to
constant weight at 105 °C, then the samples were ashed at 450 °C for 12 h. The white ash was dissolved in 1M HNO₃ (Suprapur-Merck). In the case of the liver and gills, the 2-4 g samples of (±0.0001 g) were wet-digested using a mixture of nitric and perchloric acids (3:1) (v/v) at 190°C. Then, each sample was quantitatively transferred into volumetric flasks with deionized water (MILLIPORE). Contents of Fe, Zn, Cu and Mn were determined by using flame atomic absorption spectrometry (Thermo Scientific iCE 3500Z series) with corrections made using a deuterium lamp. The parameters for the working element which were recommended by the manufactures are presented in Table 2. The methods were validated by measuring the elements in reference material: BCR CRM 422 (muscles of cod Gadus morhua (L.)) with a certified value of zinc, iron, copper and manganese (zinc-certified 19.6±0.5 mg kg⁻¹, measured 20.649±1.384 mg kg⁻¹ n=4; iron-certified 5.46±0.30 mg kg⁻¹, measured 5.236±0.249 mg kg⁻¹ n=4; copper-certified 1.05±0.07 mg kg⁻¹, measured 1.078±0.143 mg kg⁻¹ n=4; and manganese- certified 0.543±0.028 mg kg⁻¹, measured 0.560±0.034 mg kg⁻¹ n=4). The recovery rates of these elements were: 105% for Zn, 96% for Fe, 103% for Cu and 103% for Mn (Certified Reference Material – BCR, cod muscle, Commission of the European Communities - Brussels, March 1992) (Quevauviller et al., 1993). The contents of Zn, Cu, Fe and Mn in muscles, liver and gills of fish are expressed as mg kg⁻¹ wet weight (w.w.).
Table 1: Basic data morphometric.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Lake</th>
<th>Łańskie</th>
<th>Pluszne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>water Surface (ha)</td>
<td>1042.3</td>
<td>903.3</td>
</tr>
<tr>
<td>2.</td>
<td>maximum depth (m)</td>
<td>53.0</td>
<td>52.0</td>
</tr>
<tr>
<td>3.</td>
<td>volume of lake (m³)</td>
<td>168 047.3</td>
<td>134 913.7</td>
</tr>
<tr>
<td>4.</td>
<td>total catchment area (km²)</td>
<td>436.8</td>
<td>69.6</td>
</tr>
<tr>
<td>5.</td>
<td>average depth (m)</td>
<td>16.0</td>
<td>14.9</td>
</tr>
<tr>
<td>6.</td>
<td>height</td>
<td>134.7</td>
<td>140.0</td>
</tr>
<tr>
<td>7.</td>
<td>geographical coordinates</td>
<td>53°58'60" N, 20°48'08" E</td>
<td>53°58'30" N, 20°42'06" E</td>
</tr>
<tr>
<td>8.</td>
<td>cleanliness class</td>
<td>II</td>
<td>II</td>
</tr>
</tbody>
</table>

Table 2: Instrumental analytical conditions of heavy metals measurement.

<table>
<thead>
<tr>
<th>Measurement conditions</th>
<th>Zn</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorption wavelengths (nm)</td>
<td>213.9</td>
<td>248.3</td>
<td>324.8</td>
<td>279.5</td>
</tr>
<tr>
<td>lamp current (%)</td>
<td>80</td>
<td>75</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>time of measurement (second)</td>
<td>100%</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame and gas flow rate (L min⁻¹)</td>
<td>height - 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>detection limits (mg kg⁻¹)</td>
<td>0.1</td>
<td>0.5</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>sensitivity (mg L⁻¹)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 3: The content of heavy metals (mean±SD.) and correlation coefficients between fish size (body weight and total length) and concentration of metals in muscles, liver and gills of different fish species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Weight (g) (length)</th>
<th>Fe</th>
<th>Zn</th>
<th>Cu</th>
<th>Mn</th>
<th>MPI</th>
<th>FCF</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min-max (mean±SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min-max (mg kg⁻¹ net weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perch</td>
<td>214.4-601.9 (411.91±106.3)</td>
<td>0.972-1.623</td>
<td>2.366-8.874</td>
<td>0.115-0.307</td>
<td>0.071-0.187</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.51-50.70 (20.42±22.49)</td>
<td>2.132-3.239</td>
<td>2.038-2.558</td>
<td>0.287-0.336</td>
<td>0.081-0.288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.2-4.041 (10.72±4.354)</td>
<td>0.995-1.801</td>
<td>6.552-19.393</td>
<td>0.104-0.229</td>
<td>0.070-0.224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.02-9.56 (7.04±7.53)</td>
<td>1.599-2.742</td>
<td>0.903-1.699</td>
<td>0.172-0.421</td>
<td>0.259-1.380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>427.1-897.4 (313.2±523.7)</td>
<td>1.257-1.606</td>
<td>3.246-4.707</td>
<td>0.127-0.249</td>
<td>0.064-0.074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>311.4-31.20 (27.43±27.83)</td>
<td>2.748-6.252</td>
<td>2.282-27.349</td>
<td>2.608-0.648</td>
<td>0.593-1.311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.12-37.30 (27.13±27.82)</td>
<td>2.299-6.22</td>
<td>7.123-10.957</td>
<td>0.272-0.495</td>
<td>0.394-0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.04-56.31 (45.4±7.82)</td>
<td>1.017-1.340</td>
<td>3.602-5.001</td>
<td>0.164-0.452</td>
<td>0.004-0.250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.57-0.04 (27.22±26.92)</td>
<td>0.325-1.628</td>
<td>8.389-3.574</td>
<td>0.134-0.221</td>
<td>0.040-0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.10-37.50 (35.0±51)</td>
<td>2.427-8.859</td>
<td>8.437-10.655</td>
<td>0.261-0.490</td>
<td>1.487-2.602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43.4-67.46 (63.07±101.3)</td>
<td>0.961-1.76</td>
<td>3.649-4.708</td>
<td>0.141-0.325</td>
<td>0.079-0.296</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.78-41.50 (36.42±29.0)</td>
<td>2.325-4.403</td>
<td>7.378-23.420</td>
<td>0.481-0.500</td>
<td>3.416-1.080</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n - number of fish; MPI – Metal pollution index; FCF – Fulton’s condition factor; SD – standard deviation; a, b, c – significant differences between the organs of the same species (p≤0.05) (in columns). The same letter indicates the absence of significant differences between muscles, liver and gills in the same fish species (p>0.05);
Statistical analysis

The results are given as means, standard deviations (±SD) and range. The statistics data were grouped according to species and organs. After testing for homogeneity of variance (test Levene’s), the one-way analysis of variance ANOVA (post-hoc Duncan’s test) was used to test significant differences in the average content of metals studied both between seven species and organs of the same species. Differences were significant at \(p \leq 0.05 \).

The correlation coefficients between content of metal and condition factor FCF, body weight and total length of fish were calculated using STATISTICA12 program (StatSoft Polska. Sp). The significance levels of \(p \leq 0.05 \) were used.

Results

Interspecific differences in the content of heavy metals in muscles, liver and gills of seven freshwater fish were studied (Fig. 2). The Fe levels in muscles of roach (2.550 mg kg\(^{-1}\)) were significantly higher than other fish species \((p \leq 0.05)\). The liver of roach also contained more iron (123.6 mg kg\(^{-1}\)) than that of the other fishes studied \((p \leq 0.05)\). Statistically significant differences were observed between the content of iron in gills of whitefish (45.45 mg kg\(^{-1}\)) and other species \((p \leq 0.05)\). The muscles, gills and liver of pike contained more zinc (9.950, 135.0 and 41.40 mg kg\(^{-1}\), respectively) compared to the other studied fish \((p \leq 0.05)\). The content of copper was significantly higher in muscles of roach (0.279 mg kg\(^{-1}\)) than in muscles of other fish examined \((p \leq 0.05)\), whereas the significantly higher value of copper in liver was found for tench (27.14 mg kg\(^{-1}\)) \((p \leq 0.05)\). The amount of copper in gills of perch studied was significantly lower (0.177 mg kg\(^{-1}\)), whereas the concentration of these metals in gills of bream (0.523 mg kg\(^{-1}\)) was significantly higher \((p \leq 0.05)\). The muscles of bream contained significantly higher amounts of manganese (0.162 mg kg\(^{-1}\)) except in the case of perch, tench and whitefish \((p \leq 0.05)\). The liver of perch (1.681 mg kg\(^{-1}\)) had a higher content of manganese compared with the other examined fish, with the exception of roach (1.567 mg kg\(^{-1}\)) \((p \leq 0.05)\). In the case of manganese in gills, there were significant differences between bream (5.113 mg kg\(^{-1}\)) and other fish examined \((p \leq 0.05)\).

According to Regulation of the Minister of Health on foodstuff intended for particular nutritional uses, Recommended Daily Allowances (RDA) (mg capita\(^{-1}\) day\(^{-1}\), for consumers weighing 70 kg) for Fe, Zn, Cu and Mn was 14, 10, 1 and 2, respectively (Table 7). If fish consumption in 2015 amounted to 12.5 kg per capita (adults of body weight 70 kg) (Statistical Yearbook of Agriculture, 2016) it daily consumed 0.044-0.087 mg of Fe, 0.117-0.341 mg of Zn, 0.005-0.010 mg of Cu and 0.002-0.006 mg of Mn that corresponded to 0.317-0.624% of Fe, 1.174-3.408% of Zn, 0.455-0.955% of Cu and 0.085-
0.278% of Mn, of the RDA reference dose.

(http://www.ecolex.org/details/legislation/regulation-on-foodstuffs-intended-for-particular-nutritional-uses-lex-

Figure 2: Interspecific differences (mean±SD) in the content of heavy metals in the same organs of fish, a) muscles, b) liver, c) gills.

a, b, c, d, e – significant differences between the same organs of the different species (p≤0.05). The same letter indicates the absence of significant differences (p>0.05).
The content of Fe, Zn, Cu and Mn varied between selected organs (muscles, liver and gills) (Table 3). Generally, the liver of the examined fish was characterized by significantly high contents of Fe and Cu (with the exception of copper in perch) ($p \leq 0.05$). Whereas, the concentration of Mn and Zn (with the exception of Zn in tench) was significant higher in gills ($p \leq 0.05$). In almost all cases (with the exception of copper in roach), the muscles were characterized by a lower content of Zn, Cu, Fe and Mn than the liver and gills ($p \leq 0.05$). There were no statistically significant differences in the content of Cu in muscles and gills of roach ($p > 0.05$). Metal Pollution Index (MPI) was lower in muscles of each fish species and below 2 (Table 3). The higher MPI was found in liver of fish (with the exception of pike), because in the case of pike, the gills were characterized by higher values of MPI. The pollution of these metals in each tissue varied from not impacted contamination to very low contamination.

In most cases, the correlation between the concentration of metals studied in the muscles, liver and gills of fish and fish size (body weight and total length) was not statistically significant ($p > 0.05$) (Table 4 and 5). There were a negative correlations between the levels of Fe in muscles of pike ($r = -0.601$, $p = 0.05$). The contents of copper in muscles of bream were negatively correlated with total length of these fish ($r = -0.932$, $p = 0.021$). Positive correlation coefficients were observed between Zn level in muscles of whitefish ($r = 0.744$, $p = 0.034$) and body weight. Negative correlation coefficients were found between Mn content in gills of perch and length or weight body ($r = -0.694$, $p = 0.006$ and $r = -0.754$, $p = 0.002$, respectively). Similarly, for liver of bream and roach there was a negative correlation between the length and zinc concentration ($r = -0.886$, $p = 0.045$ and $r = -0.698$, $p = 0.037$, respectively). In most cases, there were no significant correlations between the content of metals and fish condition. The positive correlation coefficient between the condition factor and Zn level was at $r = 0.902$ for muscles of whitefish ($p = 0.002$). The content of Mn grew linearly with condition factor and was $r = 0.761$ (muscles of roach, $p = 0.017$) and 0.936 (liver of bream, $p = 0.019$). The Fe levels in gills of pike ($r = -0.835$, $p = 0.001$) decreased as condition factor increased. A similar correlation was found for Zn and Cu in liver of pike ($r = -0.767$, $p = 0.006$ and $r = -0.741$, $p = 0.009$, respectively), for Cu in gills of roach ($r = -0.723$, $p = 0.028$).

The heavy metals content in muscles of all fish examined was identified to have the following decreasing sequence (Fig. 2): Zn>Fe>Cu>Mn. In the case of fish liver, the concentration of these elements followed the pattern Fe>Zn>Cu>Mn (with the exception of tench). The content of metals in liver of tench included in this study showed the following sequence: Fe>Cu>Zn>Mn.
The metal values in gills of perch, tench, and bream were in a descending order of Fe>Zn>Mn>Cu, whereas in gills of Pike, Roach and Whitefish, it was Zn>Fe>Mn>Cu. Significant positive correlation coefficient were noted between the following metal pairs (Table 6): Fe-Zn (in liver and gills of perch, muscles of pike), Zn-Cu (in muscles and liver of pike, muscles and gills of tench, liver of whitefish), Cu-Mn (in gills of perch, muscles of roach), Fe-Mn (in gills of pike, muscles of roach).

Table 4: The correlation coefficients between fish size (body weight and total length) or FCR and concentration of Fe and Zn in muscles, liver and gills of different fish species.

<table>
<thead>
<tr>
<th></th>
<th>weight</th>
<th>length</th>
<th>FCR</th>
<th>muscles</th>
<th>liver</th>
<th>weight</th>
<th>length</th>
<th>FCR</th>
<th>muscles</th>
<th>liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>muscles</td>
<td>0.428</td>
<td>0.383</td>
<td>0.183</td>
<td>0.181</td>
<td>0.536</td>
<td>0.149</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>-0.230</td>
<td>-0.249</td>
<td>-0.200</td>
<td>-0.092</td>
<td>-0.082</td>
<td>0.117</td>
<td>-0.244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gills</td>
<td>-0.245</td>
<td>-0.163</td>
<td>-0.462</td>
<td>-0.379</td>
<td>-0.401</td>
<td>-0.184</td>
<td>-0.092</td>
<td>-0.216</td>
<td>-0.130</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
</tr>
<tr>
<td>muscles</td>
<td>0.050</td>
<td>0.808</td>
<td>0.524</td>
<td>0.123</td>
<td>0.718</td>
<td>0.772</td>
<td>0.608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>-0.112</td>
<td>-0.175</td>
<td>0.150</td>
<td>-0.510</td>
<td>-0.326</td>
<td>0.707</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gills</td>
<td>-0.228</td>
<td>-0.021</td>
<td>-0.835</td>
<td>-0.197</td>
<td>-0.262</td>
<td>-0.229</td>
<td>-0.172</td>
<td>0.653</td>
<td>0.452</td>
<td></td>
</tr>
</tbody>
</table>

P- significant level

Table 5: The correlation coefficients between fish size (body weight and total length) or FCR and concentration of Cu and Mn in muscles, liver and gills of different fish species.

<table>
<thead>
<tr>
<th></th>
<th>weight</th>
<th>length</th>
<th>FCR</th>
<th>muscles</th>
<th>liver</th>
<th>weight</th>
<th>length</th>
<th>FCR</th>
<th>muscles</th>
<th>liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>muscles</td>
<td>0.384</td>
<td>0.214</td>
<td>0.347</td>
<td>0.272</td>
<td>0.163</td>
<td>0.219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>-0.024</td>
<td>-0.098</td>
<td>0.119</td>
<td>-0.334</td>
<td>-0.349</td>
<td>-0.019</td>
<td>-0.463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gills</td>
<td>-0.324</td>
<td>-0.256</td>
<td>-0.260</td>
<td>-0.037</td>
<td>0.459</td>
<td>-0.754</td>
<td>0.034</td>
<td>0.144</td>
<td>0.440</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
</tr>
<tr>
<td>muscles</td>
<td>-0.168</td>
<td>-0.172</td>
<td>0.005</td>
<td>-0.005</td>
<td>-0.028</td>
<td>0.134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>-0.512</td>
<td>-0.325</td>
<td>-0.741</td>
<td>0.064</td>
<td>0.086</td>
<td>0.236</td>
<td>-0.600</td>
<td>0.248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gills</td>
<td>-0.183</td>
<td>-0.226</td>
<td>0.351</td>
<td>-0.402</td>
<td>-0.531</td>
<td>0.061</td>
<td>0.134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>muscles</td>
<td>0.3004</td>
<td>0.400</td>
<td>-0.379</td>
<td>0.608</td>
<td>0.604</td>
<td>-0.122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>0.563</td>
<td>0.400</td>
<td>0.459</td>
<td>0.201</td>
<td>0.204</td>
<td>0.817</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 continued:

<table>
<thead>
<tr>
<th></th>
<th>Liver</th>
<th>gills</th>
<th>Perch (n=31)</th>
<th>Muscles</th>
<th>Liver</th>
<th>gills</th>
<th>whitefish</th>
<th>Liver</th>
<th>gills</th>
<th>Bream (n=5)</th>
<th>muscles</th>
<th>Liver</th>
<th>gills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P=0.275</td>
<td>P=0.514</td>
<td>P=0.061</td>
<td>P=0.857</td>
<td>P=0.440</td>
<td>P=0.314</td>
<td>P=0.292</td>
<td>P=0.525</td>
<td>P=0.472</td>
<td>P=0.391</td>
<td>P=0.888</td>
<td>P=0.239</td>
<td>P=0.514</td>
</tr>
<tr>
<td>Perch (n=31)</td>
<td>0.354</td>
<td>0.337</td>
<td>0.791</td>
<td>-0.096</td>
<td>-0.394</td>
<td>-0.498</td>
<td>0.517</td>
<td>-0.328</td>
<td>0.368</td>
<td>0.433</td>
<td>-0.075</td>
<td>0.5682*</td>
<td>0.337</td>
</tr>
<tr>
<td>Muscles</td>
<td>0.459</td>
<td>0.255</td>
<td>0.402</td>
<td>0.530</td>
<td>0.001</td>
<td>0.761</td>
<td></td>
<td></td>
<td>0.005</td>
<td>-0.395</td>
<td>0.366</td>
<td>0.300</td>
<td>0.225</td>
</tr>
<tr>
<td>Whitefish</td>
<td>0.614</td>
<td>0.741</td>
<td>0.823</td>
<td>0.837</td>
<td>0.823</td>
<td>0.823</td>
<td>0.673</td>
<td>0.673</td>
<td>0.686</td>
<td>0.686</td>
<td>0.686</td>
<td>0.686</td>
<td>0.686</td>
</tr>
<tr>
<td>Bream (n=5)</td>
<td>0.600</td>
<td>0.697</td>
<td>0.498</td>
<td>0.508</td>
<td>0.535</td>
<td>0.634</td>
<td>0.297</td>
<td></td>
<td>0.012</td>
<td>0.184</td>
<td>0.090</td>
<td>0.569</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Correlation coefficients (r) of dependence between contents of metal in fish.

<table>
<thead>
<tr>
<th></th>
<th>Zn</th>
<th>Cu</th>
<th>Mn</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>gills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perch (n=31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.174</td>
<td>0.350</td>
<td>0.437</td>
<td>0.776***</td>
<td>-0.153</td>
<td>-0.326</td>
<td>0.935***</td>
</tr>
<tr>
<td>Cu</td>
<td>0.393</td>
<td>-0.183</td>
<td>0.068</td>
<td>-0.472</td>
<td>0.455</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.424</td>
<td>-0.051</td>
<td>0.588*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pike (n=11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.194</td>
<td>0.658*</td>
<td>-0.234</td>
<td>-0.107</td>
<td>-0.096</td>
<td>-0.079</td>
<td>0.215</td>
</tr>
<tr>
<td>Cu</td>
<td>0.751**</td>
<td>0.366</td>
<td>0.776**</td>
<td>0.533</td>
<td>0.006</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.015</td>
<td>0.685*</td>
<td>-0.117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tench (n=6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.881*</td>
<td>0.923**</td>
<td>0.835*</td>
<td>0.322</td>
<td>-0.274</td>
<td>0.181</td>
<td>0.280</td>
</tr>
<tr>
<td>Cu</td>
<td>0.836*</td>
<td>0.662</td>
<td>0.074</td>
<td>0.247</td>
<td>0.844*</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.629</td>
<td>0.422</td>
<td>-0.326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roach (n=9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.659</td>
<td>0.365</td>
<td>0.668*</td>
<td>0.518</td>
<td>-0.220</td>
<td>0.031</td>
<td>-0.455</td>
</tr>
<tr>
<td>Cu</td>
<td>0.432</td>
<td>0.730*</td>
<td>0.587</td>
<td>-0.396</td>
<td>-0.615</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.762*</td>
<td>-0.377</td>
<td>-0.609</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitefish (n=9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.319</td>
<td>0.228</td>
<td>-0.636</td>
<td>0.178</td>
<td>0.269</td>
<td>0.459</td>
<td>0.397</td>
</tr>
<tr>
<td>Cu</td>
<td>0.269</td>
<td>0.086</td>
<td>0.902**</td>
<td>-0.656</td>
<td>0.332</td>
<td>0.331</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.033</td>
<td>-0.598</td>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bream (n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.409</td>
<td>0.841</td>
<td>0.409</td>
<td>0.177</td>
<td>-0.110</td>
<td>-0.520</td>
<td>0.405</td>
</tr>
<tr>
<td>Cu</td>
<td>0.526</td>
<td>-0.116</td>
<td>0.784</td>
<td>0.712</td>
<td>-0.152</td>
<td>0.642</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.247</td>
<td>0.667</td>
<td>-0.496</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n - number of fish; *significant correlation (p≤0.05), ** highly significant correlation (p≤0.01), *** very highly significant correlation (p≤0.001).

P- significant level
Table 7: Coverage of the recommended daily allowances of metals (%).

<table>
<thead>
<tr>
<th>Species</th>
<th>Fe</th>
<th>Zn</th>
<th>Cu</th>
<th>Mn</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perch</td>
<td>0.433</td>
<td>1.592</td>
<td>0.524</td>
<td>0.187</td>
<td>This study</td>
</tr>
<tr>
<td>Pike</td>
<td>0.317</td>
<td>3.408</td>
<td>0.455</td>
<td>0.217</td>
<td>This study</td>
</tr>
<tr>
<td>Tench</td>
<td>0.449</td>
<td>1.307</td>
<td>0.561</td>
<td>0.103</td>
<td>This study</td>
</tr>
<tr>
<td>Whitefish</td>
<td>0.350</td>
<td>1.174</td>
<td>0.680</td>
<td>0.085</td>
<td>This study</td>
</tr>
<tr>
<td>Roach</td>
<td>0.624</td>
<td>1.570</td>
<td>0.955</td>
<td>0.219</td>
<td>This study</td>
</tr>
<tr>
<td>Bream</td>
<td>0.342</td>
<td>1.429</td>
<td>0.690</td>
<td>0.278</td>
<td>This study</td>
</tr>
</tbody>
</table>

RDA
AI
ARs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>(Regulation of the Minister of Health, 2010)</th>
<th>(EFSA, 2013; EFSA, 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDA</td>
<td>14</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>1.6*</td>
<td>1.3**</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARs</td>
<td>6.2-10.2***</td>
<td>7.5-12.7****</td>
<td>7.5-12.7****</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RDA – Recommended Daily Allowances (mg capita⁻¹ day⁻¹) for consumers with weight 70 kg
AI – Adequate Intake in adults (mg capita⁻¹ day⁻¹)
ARs – Average Requirements (mg capita⁻¹ day⁻¹)

* - for adults men; ** - for adults women; *** - for women with a reference weight of 58.5 kg; **** - for men with a reference weight of 68.1 kg

Discussion
This study of chosen heavy metals content in freshwater fish showed both differences between some species, as well as among their organs (Fig. 2 and Table 3). El-Moselhy et al. (2014) reported that metal accumulation varied between organs and species depending on species-specific factors like feeding behavior, swimming patterns and genetic tendency, and/or other factors like age and geographical distribution that caused variation in metals accumulations between fish even from the same species. Jakimska et al. (2011) noted that the bioaccumulation of metals in tissues of animals depended on biotic factors like diet and position in the trophic web. Jeziorska and Witeska (2001) found that the differences in body metal concentration may result from different feeding rates, food composition and feeding site. Mazej et al. (2010) also found that zinc and other metals (Hg, Pb and Cd) in organs of fish varied considerably both between species and tissues. According to our previous study, the content of Fe in fish muscles was affected by the feeding habits (vendace>roach>bream ≈ whitefish>perch=pike) (p≤0.05) (Łuczyńska et al., 2006). The same authors reported that the concentration of Zn, Cu and Mn in muscles of fish gave rise to the following sequence: pike>vendace≈roach>perch>whitefish ≈bream; vendace>roach>bream> whitefish≈pike≈perch; vendace>roach ≈whitefish≈bream and pike>perch (p≤0.05), respectively. Interspecific differences in the content of Fe and Cu (p≤0.05) in muscles of bream (3.94 and 0.79 mg kg⁻¹, respectively) and pike (5.01 and 1.16 mg kg⁻¹, respectively) could be due to their different feeding habits (i.e., benthophagous – bream, piscivorous – pike) (Grela et al., 2010).
(2015) also showed that the concentration of heavy metals (Cd, Co, Cu, Ni, Pb, Fe and Hg) in fish from Khuzestan shore (northwest of the Persian Gulf) was strongly affected by habitat and feeding habit and increased in the following order: benthic omnivorous fish > zooplanktivore fish > phytoplanktivore fish > piscivore fish. Lidwin-Kaźmierkiewicz et al. (2009) found the lowest content of Mn in muscles of pike, whereas Zn level was significantly higher ($p \leq 0.05$) in pike and perch than in bream and carp, *Cyprinus carpio* L. This is in accordance with the results of our study (Fig. 2). The data indicated by Kenňová et al. (2010) showed that Zn concentration in non-predatory fish species was higher than in predatory fish. The same authors observed that Cu concentration in all tissues (with the exception of liver) was comparable in all the fish species. In the case of liver, the concentration of Cu could be ranked as follows: asp > carp > bream > pike > pikeperch (*Sander lucioperca* L.). Szarek-Gwiazda and Amirowicz (2006) found a relationship between the concentrations of metals (Cd, Pb, Cu, Mn, Fe and Sr) in some fish tissues and their trophic habits. According to Łuczyńska et al. (2009), muscles of the benthophasic species (roach and bream) had more Fe than piscivorous species (pike and perch) ($p \leq 0.01$), whereas there were no clear differences in the concentrations of Mn, Cu and Zn between groups of non-predatory and predatory fish ($p > 0.01$). In turn, Svecevičius et al. (2014) showed that benthophasic fish (gibel carp, *Carassius gibelio* and roach) accumulated more Zn and Cu than predatory fish (perch and pike).

Accumulation of metals in the fish organs is a function of uptake and depuration rates (Jezierska and Witeska, 2001). According to these authors, concentrations of metals in various organs may change during exposure, according to various patterns. Lenhardt et al. (2012) observed that the content of Cu was higher in liver, Mn in gills, whereas Fe and Zn was higher in both liver and gills. The lowest contents of most elements were found in muscles. Similar findings were published by Rajkowska and Protasowicki (2013). These results are in good agreement with those of Zubcov et al. (2012), Yancheva et al. (2014), Milošković and Simić (2015) and Arantes et al. (2016). According to the above authors, the content of Cu and Zn for all species and locations was the lowest in muscles. Therefore, the liver is often considered a good monitor of water pollution with metals since their concentrations are proportional to those present in the environment (Jezierska and Witeska, 2001). Shinn et al. (2009) observed that contents of Cu, Zn were significantly higher in the liver of bream, perch and roach than in muscles. Khaled et al. (2016) comparing concentration of metals in *Claries lazera* collected from El Ebrahimia canal (Egypt) showed the
following accumulation ranking: liver > gills > kidney > blood > muscles. The concentration of copper in all studied organs of carp from the Indus river (Pakistan) was recorded in the order of liver > kidney > muscles > gills (Mahboob et al., 2016). Differences in Zn, Fe, Cu and Mn between muscles, liver and gills of perch were also observed by Klavins et al. (2009). A similar observation was made by Farkas et al. (2001) for Cu and Zn in bream. Namin et al. (2011) showed that the Zn content in muscle tissue of pike was slightly higher than in the liver, while the level of Cu was significantly higher in the liver than in muscles. Zinc accumulates in the body tissues of bentophagous and predatory fishes in the following order: gills > liver > muscle (Pilecka et al., 2015). Jezińska and Witeska (2006) showed that at the beginning of waterborne exposure metal concentrations in the gills rapidly increase, and then usually decline, while after the end of exposure metals are rapidly removed from the gills. Rajkowska et al. (2008) observed that Fe and Cu accumulated in the liver of roach, Mn accumulated mostly in the gills, whereas Zn accumulation was similar in the gills and kidney. The same author also found that the lowest content of those metals was in muscles. According Jezińska and Witeska (2006), levels of metal in the liver rapidly increase during exposure, and remain high for a long time of depuration, when other organs are already cleared.

The smaller and younger fish accumulate greater amounts of metals examined than larger, older fish, which could be attributable to the higher metabolic rate (Jezińska and Witeska, 2001). In the present study, there were only a few significant correlations between the levels of metals in organs of fish and body weight or total length \((p \leq 0.05)\) (Table 4 and Table 5). Szarek-Gwiazda and Amirowicz (2006) found very weak correlations between fish length or weight and metal contents (Cu, Fe, Mn) in tissues of roach and perch, whereas level of metals such as Hg, Zn, Pb, Cd and Cr increased with roach size from the Dije River basin (Czech Republic) (Dvořák et al., 2014). Negative correlations were reported between the content of Cu, Mn and Fe and a positive correlation between Zn and size of perch, although they were not statistically significant \((p > 0.05)\) (Klavins et al., 2009). A positive correlation for Cu and Fe and a negative correlation for Zn and Mn in muscles of fish from Żnin Duże Lake (Poland) and the body length were observed by Stanek et al. (2005). The content of Cu in the liver of bream positively related to size (length and weight), whereas in the case of muscles and gills the content of Cu and Zn, as well as Zn for liver, negatively related to size (Farkas et al., 2003). According to Rajkowska and Protasowicki (2013), the concentrations of Zn, Cu and Fe were also correlated with body weight or length. Milošković and Simić (2015) found a few significant correlations...
between the element accumulation (As, Sn, Ni, Co, Al, Se and Fe) and fish size and weight, while they observed the most correlations between element accumulation and fish size and weight in the tissues of pike, which could probably be explained by life histories, as well as by habitat of this species. Kostecki (2000) found that as opposed to roach, the content of Zn and Mn in muscles of tench decreased as fish weight increased. The results of this author are not consistent with the results obtained in this work (Table 4 and 5). Kasimoglu (2014) showed that the correlations between the trace metal concentrations of muscles (Co, Cr, Cu, Fe, Mn, Ni and Zn) and the condition factor (FCF) of eel, Anguilla anguilla L. varied with characteristic opposite trends compared to those related to, length, weight and age. Whereas Farkas et al. (2001) did not find any significant correlation between contents of Cu and Zn in organs and the condition factor of bream ($p>0.05$). Similarly, Hama et al. (2015) observed that there was no significant correlation between heavy metals (Cd, Zn, Cr, Cu and Pb) and condition factor of fish from Lake Ranya (Iraq), while Alkan et al. (2016) found different correlations between metals, including Cu and Zn and FCF of the fish species Trachurus mediterraneus, Engraulis encrasiculus ponticus, and Sprattus sprattus.

The decreasing sequence (Table 6): Zn$>$Fe$>$Cu$>$Mn in muscles of all fish examined is in good agreement with the previous studies reported by Łuczyńska et al. (2009). Ebrahimpour et al. (2011) showed that the muscles, gills and liver of pike accumulated more zinc than copper. These patterns were found for perch by Yazdi et al. (2012). According to Brázová et al. (2012), the content of heavy metals in organs of perch decreased in the order Zn$>$Cu$>$Mn. These results are consistent with the present study (except for gills of all fish and liver of tench and rainbow trout) (Table 6). Klavins et al. (2009) noted that in gills of perch, the pattern of metal content was: Zn$>$Fe$>$Mn$>$Cu; whereas in the liver and muscles it was Fe$>$Zn$>$Cu$>$Mn. On the other hand, Staniskiene et al. (2006) found the following sequences: Zn$>$Fe$>$Cu$>$Mn (in fish flesh) and Fe$>$Zn$>$Mn$>$Cu (in fish liver and gills), whereas Andreji et al. (2006) noted that in muscles of roach the order of the studied elements was Fe$>$Zn$>$Mn$>$Cu. Iron and then zinc were predominant in muscles of perch from the Ob River basin (Osipova et al., 2015).

The obtained results showed interspecific differences between the concentration of heavy metals in fish species belonging to the food chain of freshwater aquatic ecosystems and having different feeding habits (piscivorous and bentophagous). In most cases, the highest contents of iron and copper were found in the liver, whereas it was zinc and manganese in gills for tench. Therefore, these organs may be good indicators of freshwater pollution. Generally, lower concentrations of these metals were
found in muscles. A few significant correlations were also observed between the levels of metals in organs and condition factor, body weight or total length. Existing small differences require further investigation. Otherwise, the fish species is safe for human consumption but the levels of these metals should be controlled to avoid excessive intake of elements.

Acknowledgements

This research was partially financed by Chair of Commodity and Food Analysis (statutory research No. 17.610.008-300)

References

Bat, L., Anci, E., Sezgin, M. and Şahin, F., 2015. Heavy metal levels in the liver and muscle tissues of the four commercial fishes from Lake Balik, Kızılırmak Delta (Samsun, Turkey). Journal of Coastal Life Medicine, 3(12), 950-955. DOI:10.12980/jclm.3.2015j5-224

Bochenek, I., Protasowicki, M. and Brucka-Jastrzębska, E., 2008. Concentrations of Cd, Pb, Zn, and Cu in roach, Rutilus rutilus (L.) from the lower reaches of the Oder River, and their correlation with concentrations of heavy metals in bottom sediments collected in the same area. Archives of Polish Fisheries, 16(1), 21-36. DOI:10.2478/s10086-008-0002-8

Dikanoviší, V., Skorić, S. and Gačić, Z., 2016. Concentrations of metals and trace elements in different tissues of nine fish species from the Meduršje Reservoir (West Morava River Basin, Serbia). Archives of Biological Sciences, 68(4), 811-819. DOI:10.2298/AB151104069D

EFSA Journal, 2013. Scientific Opinion on Dietary Reference Values for manganese. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). European Food Safety Authority (EFSA), Parma,

Hosseini, M., Nabavi, S.M.B., Nabavi, S.N. and Pour, N.A., 2015. Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly

Jeziorska, B. and Witeska, M., 2001. Metal toxicity to fish. Monographs No 42. Siedlce, Poland. 318 P.

Environmental Science and Toxicology, 5(2), 026-038, DOI:org/10.14303/jrest.2016.011

Mazej, Z., Al Sayegh-Petkovšek, S. and Pokorny, B., 2010. Heavy metal concentrations in food chain of
Łuczyńska et al., The relationship between biotic factors and the content of heavy metal in the tissue of fish from Lake Velenjsko jezero, Slovenia: An artificial lake from mining. *Archives of Environmental Contamination and Toxicology*, 58(40), 998-1007. DOI:10.1007/s00244-009-9417-5

Regulation of the Minister of Health on foods intended for particular nutritional uses (16 September 2010), http://www.ecolex.org/details/legislation/regulation-on-foodstuffs-intended-for-particular-nutritional-uses-lex-faoec113738/.

yearbooks/statistical-yearbook-of-agriculture-2016.6.11.html.

