Study on nursery growth performance of Pacific white shrimp (*Litopenaeus vannamei* Boone, 1931) under different feeding levels in zero water exchange system

Khanjani M.H.\(^1\)*; Sajjadi M.M.\(^2\), Alizadeh M.\(^3\); Sourinejad I.\(^1\)

Received: July 2015
Accepted: September 2015

Abstract
Effect of different feeding levels on water quality, growth performance, survival rate and body composition of Pacific white shrimp *Litopenaeus vannamei* post larvae were studied in zero water exchange system. Shrimp post larvae with mean weight of 74.46± 6.17 mg were fed for 32 days in 300L fiberglass tanks containing 130L water at density of 1 post larvae L\(^{-1}\). There were five treatments including control and four biofloc treatments with different feeding levels of 15%, 15%, 12%, 9%, 0% of body weight per day, respectively. The results showed that there were no significant differences in water parameters such as dissolved oxygen and pH between different treatments (\(p>0.05\)). There were significant differences in water ammonia level between different treatments (\(p<0.05\)). The maximum (0.39 mg/L) and minimum (0.12 mg/L) levels of ammonia were observed in control and biofloc treatment with minimum feeding level (9%BW/day), respectively. The highest body weight gain (1.55g), growth rate (48.50 mg per day), specific growth rate (9.64%/day), biomass gain (182.1g) and body length increase (33.62mm) were observed in biofloc treatment with maximum feeding level. The highest feed conversion ratio and the lowest feed efficiency were obtained in control (\(p<0.05\)). The proximate body composition analysis revealed an increase in lipid, protein and ash in biofloc treatments. Results showed that using biofloc technology can decrease water exchange amount and improve feed utilization in nursery culture of Pacific white shrimp. Moreover, presence of biofloc improved the water quality which led to the enhancement in growth performance in nursery stage of shrimp.

Keywords: Biofloc technology, Zero-water exchange system, Water quality, Growth performance, Body composition, Nursery, Pacific white shrimp.

1- Fisheries Department, Faculty of Marine and Atmospheric Sciences and Technologies, Hormozgan University, Iran
2- Fisheries Department, Faculty of Natural Resources, Guilan University, Iran.
3- Iranian Fisheries Research Organization - Inland Salt Water Fishes Research Center, Bafgh-Yazd-Iran

* Corresponding author's Email: m.h.khanjani@gmail.com
Introduction
As human population is increasing, food production industries such as aquaculture need to expand as well as shrimp farming. Several environmental impacts arising from the expansion of intensive shrimp culture such as deteriorated water quality, pathogen spread and the outbreak of diseases are inevitable (Burford and Williams, 2001; Jackson et al., 2003; Zhang et al., 2012; Liu et al., 2014). In shrimp culture systems, an innovative technology which is called as biofloc technology (zero-water exchange system) has been identified for solving the aforesaid impacts in order to achieve the objectives of sustainable aquaculture development by using zero-water exchange (Crab et al., 2007; De Schryver et al., 2008; Avnimelech, 2008; 2009).

This technology is basically dependent on manipulation and regulation of carbon/ nitrogen (C/N) ratio for developing microbial community, bioflocs (Crab et al., 2007; Asaduzzaman et al., 2008; De Schryver et al., 2008). Adding carbohydrates into zero-water exchange systems and regulating the C/N ratio (10 to 20) (Asaduzzaman et al., 2008) lead to microbial harvest from excreted inorganic nitrogen and produce microbial proteins that are then actively consumed by the shrimp (Avnimelech, 2009). These processes would results in the enhancement of water quality, heterotrophic bacterial activities, zooplankton growth and better growth performance for Pacific white shrimp (Gao et al., 2012; Xu and Pan, 2012; Xu et al., 2012, 2013). The biofloc is a mass rich containing diatoms, bacteria, fungi, protozoa, microalgae, fecal pellets, remains of dead cells, small organic and inorganic particles and other suspended organisms (Hargreaves, 2006; Avnimelech, 2007; De Schryver et al., 2008; Valle et al., 2015). Biofloc technology, in addition, could provide food source with high value for the cultured shrimp which is available for 24 hours per day in situ as a supplemental food source (Avnimelech, 1999; Avnimelech, 2009; Crab et al., 2010). Bioflocs can improve growth performance and enhance feed digestion and utilization of the cultured shrimp in zero-water exchange tanks (Xu and Pan, 2012). They can be used as an important feed supplement in the shrimp diet while contributing as a digestible protein source especially at nursery stage (Otoshi et al., 2011; Wasielesky et al., 2013). Moreover, as previously reported, bioflocs can be applied as a feed ingredient in shrimp diet enhancing the growth rate of Pacific white shrimp (Kuhn et al., 2010).

Many researchers have reported that bioflocs produced within the culture systems can be consumed by the shrimp and fulfill a significant part of nutrition demand, and subsequent reduction in the requirement of formulated feed protein and feed cost (Burford et al., 2004; Hari et al., 2006; Wasielesky et al., 2006; Crab et al., 2010; Xu et al.,...
Feed and protein utilization is significantly higher in biofloc systems (Avnimelech, 2009). Bioflocs are effective potential food source for tilapia fish; feeding ratio of tilapia in biofloc ponds is 20% less than conventional ponds (Avnimelech, 2007). In this system, about 20-30% of protein assimilation by shrimp originates actively from biofloc harvesting (Burford et al., 2003, 2004). Biofloc could be suggested as a new alternative feed in marine shrimp industry which decreases feeding dependence on fish oil and meal (Megahed and Mohamed, 2014).

The Pacific white shrimp is the most widely farmed shrimp species throughout the world. Typical performance characteristics of this species, together with its tolerance against a wide range of salinities and disease, rapid growth, suitable survival and high-density culture make it be considered as a good candidate for intensive culture (Cuzon et al., 2004).

In recent years, biofloc technology has become a popular technology in the farming of Pacific white shrimp, with zero-water exchange (Tacon et al., 2002; Burford et al., 2004; Wasielesky et al., 2006, 2013) and successful operation in nursery phase (Samocha et al., 2007; Mishra et al., 2008; Wasielesky et al., 2013). Nursery phase is the transitional period between hatcheries and grow out systems (Mishra et al., 2008). Improvement of this phase helps the production of more shrimp during grow out stage while increasing harvest yields (Arnold et al., 2009; Souza et al., 2014). However, the advantageous effects of bioflocs on the shrimp performance in zero-water exchange system still are unknown.

In the present study the effects of different feeding levels on nursery culture function of Pacific white shrimp L. vannamei (Boone, 1931) in zero-water exchange tanks were investigated. Water quality, densities of total heterotrophic bacteria and body composition of shrimps in different treatments were also studied in the present research.

Materials and methods
Experimental design and system management
The experiment was conducted in Kolahi Shrimp Hatchery located at Hormozgan Province, Iran from August to September 2014. Initial mean body weight and body length of treated post larvae were (74.46± 6.17 mg) and (19.8± 0.88 mm), respectively.

The experiment was carried out in 300l indoor fiberglass tanks (0.38 m² in bottom area). All tanks were filled by sea water throughout a sand-filtered (130l) in 33ppt salinity. Density in each tank was 130 individuals (1 ind./L). Five treatments were set up as clear water (control), maximum feeding level, medium feeding level, minimum feeding level without water exchange (biofloc-based) and water exchange with floc feeding (Without pellet feeding). Daily feeding rates were 15%, 15%, 12%, 9%, 0% BW/day at the
beginning of experiment and then gradually decreased to 11%, 11%, 8.8%, 6.6% BW/day at the end of experiment, respectively (Table 1).

Shrimps were fed by commercial feed with 38% crude protein three times per day at 8 a.m., 14 p.m. and 20 p.m. Daily water exchange rate in control group was 35-50%.

Bioflocs were collected from three indoor bioflocs-based shrimp culture tanks (2000 lit. capacity) by filtration of water through a 20μm mesh size nylon bag and then inoculated into all bioflocs-based tanks with the same amount (0.5 mL/L biofloc volume) prior stocking the shrimps.

Molasses (59.48% dry matter, 75.40% carbohydrate) as source of carbohydrate was added to bioflocs-based tanks under zero-water exchange in order to promote the development of bioflocs during the experimental period. Adding molasses was performed once a day based on the calculation as described by Avnimelech (2009). C/N ratio as 15:1 was used in days of the experiment to provide assuming 50% carbon contents of the molasses added assimilated by microbial biomass. The amount of required organic carbon was determined based on the amount of shrimp feed added to the experiment tanks.

The pre-weighed molasses was completely mixed in a beaker with the relevant tank water and uniformly distributed over the tank's surface directly after feed application at 14:00 p.m. In the case of physicochemical parameters of the water used in the beginning of the experiment, the average water salinity, dissolved oxygen, pH and water temperature were 33±0.5 ppt, 6±0.2 mg/L, 8.15±0.2 and 31.5±0.5°C, respectively. All tanks were aerated and continuously agitated using 3 air-stones connected to an air pump.

Table 1: Description of treatments based on different feeding levels

<table>
<thead>
<tr>
<th>Treatments Description</th>
<th>Feeding rate (% body weight)</th>
<th>Water exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (clear water)</td>
<td>W1 15 W2 14 W3 13 W4 12</td>
<td>35-50% (daily)</td>
</tr>
<tr>
<td>Maximum feeding level</td>
<td>W1 15 W2 14 W3 13 W4 12</td>
<td>No exchange</td>
</tr>
<tr>
<td>Medium feeding level</td>
<td>W1 12 W2 11.2 W3 10.4 W4 9.6</td>
<td>No exchange</td>
</tr>
<tr>
<td>Minimum feeding level</td>
<td>W1 9 W2 8.4 W3 7.8 W4 7.2</td>
<td>No exchange</td>
</tr>
<tr>
<td>Without pellet feeding</td>
<td>W1 0 only adding floc</td>
<td>35-50% (daily)</td>
</tr>
</tbody>
</table>

W= trail weeks.

Water parameters measurements

Measurements of water temperature (Digital Thermometer), pH (pH Lutron 208, pH meter) and dissolved oxygen (DO) (DO Lutron 510 Oxygen meter) were recorded twice daily (8 a.m. and 16 p.m.). Water salinity was measured daily at 9 a.m. Water transparency was recorded using a Secchi disk three times per week. Settled solids (SS) was determined on site using Imhoff cones (scaled conical hopper) every five days by recording the volume taken in through the bioflocs in 1000 mL of the
tank water after 20 min sedimentation (Avnimelech and Kochba, 2009). In order to calculate total suspended solids (TSS), water sample was filtered under vacuum pressure through pre-dried and pre-weighed Whatman GF/C filter paper Number 42. The filter paper containing suspended materials was dried at 105°C in oven until constant weight and the dried sample was weighed to 0.01 mg (Azim and Little, 2008). Total Heterotrophic Bacteria (THB) count in the water was estimated according to standard procedures (APHA, 2005) and expressed as colony forming units (CFU). Measurement of ammonia, nitrite and nitrate (mg/L) was performed every week following method adapted from MOOPAM (1999).

Approximate body composition and biofloc
All the shrimp and floc samples were analyzed for proximate composition according to methodologies reported by AOAC (2000). Samples were oven dried (at 105°C for 24h) and then stored in a freezer (-18°C) until analysis.

Growth performance
Growth indices including body weight gain, body length gain (from postorbital edge to tip of telson), body weight, daily growth rate, biomass, specific growth rate, feed conversion ratio, feed efficiency, survival and yield shrimp bioassays were measured every week. Shrimp weight was measured on a weekly basis to determine shrimp growth and the amount of feed and organic carbon offered. Growth parameters were determined based on the following equations (Tacon et al., 2002; Khanjani et al., 2016).

Body weight gain (mg) = final weight - initial weight
Body length gain (mm) = final length - initial length
Body weight index (BWI) (%) = [(final weight - initial weight)/initial weight] × 100
Growth rate (GR) (mg) = [(final weight - initial weight)/ days of experiment]
Biomass (g) = (final weight - initial weight) × survival rate × number of shrimp
Survival rate (%) = (number of individuals at the end of testing period/initial number of individuals stocked) × 100.
Specific growth rate (SGR in weight) (%/day) = [(ln final weight-ln initial weight) ×100]/days of experiment
Specific growth rate (SGR in length) (%/day) = [(ln final length -ln initial length) ×100]/days of experiment
Feed conversion ratio (FCR) = feed consumed (dry weight)/live weight gain (wet weight)
Feed efficiency (FE) (%) = [Final weight - initial weight]/ feed consumed ×100

Statistical analysis
Results were expressed as the mean ± standard deviation (SD). Data were analyzed using one-way analysis of variance (ANOVA). Mean differences were compared by Duncan’s multiple
range tests at the level of 0.05. Statistical analyses were carried out using statistical package of SPSS (SPSS, version 21). All the charts and graphs were plotted using Excel version 2013.

Results
Water quality parameters measured during the experimental period are shown in Table 2. No significant differences were observed in values of parameters including temperature, dissolved oxygen and pH among various treatments during culture period ($p>0.05$). However, there were significant differences between treatments in some indices such as salinity, ammonia, nitrate and nitrite ($p<0.05$). The amounts of ammonia, nitrite and nitrate concentrations in treatments are demonstrated in Fig. 1A, B, C. There were significant differences in ammonia level of water between different treatments ($p<0.05$). The maximum (0.39 mg/L) and minimum ammonia (0.12 mg/L) levels were observed in water exchange treatment (control) and biofloc treatment with minimum feeding level, respectively ($p<0.05$). The highest concentrations (Mean ± SD) of NO$_2$ and NO$_3$ were 5.88± 2.40 mg/l, 6.80 ± 3.40 mg/L in control treatment and biofloc treatment with maximum feeding level, respectively. The amounts of settled solids (SS), total suspended solids (TSS) and water transparency in 32-day experiment period are shown in Figs 2 A, B and C.

Total heterotroph bacteria count of water in different treatments is presented in Fig. 3A. The highest value ($9.1 \times 10^6 \pm 0.28$) and the lowest value ($1.13 \times 10^4 \pm 0.15$ cfu mL$^{-1}$) of total count were measured on 32th day of experiment in control treatment and biofloc treatment with maximum feeding level, respectively. Values of weight and length at different weeks of trail are presented in Figs 3 B and C.

Shrimp growth performance is shown in Table 3.

Table 2: Water parameters measured in experimental treatments.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Maximum feeding level</th>
<th>Medium feeding level</th>
<th>Minimum feeding level</th>
<th>Without pellet feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature a.m. (°C)</td>
<td>30.12 ± 0.76a</td>
<td>30.20 ± 0.71a</td>
<td>30.09 ± 0.72a</td>
<td>30.06 ± 0.76a</td>
<td>30.17 ± 0.82a</td>
</tr>
<tr>
<td>Temperature p.m. (°C)</td>
<td>30.56 ± 0.56a</td>
<td>30.61 ± 0.52a</td>
<td>30.51 ± 0.55a</td>
<td>30.53 ± 0.56a</td>
<td>30.60 ± 0.53a</td>
</tr>
<tr>
<td>Dissolved oxygen a.m. (mg/L)</td>
<td>6.36 ± 0.54a</td>
<td>6.24 ± 0.51a</td>
<td>6.27 ± 0.62a</td>
<td>6.33 ± 0.57a</td>
<td>6.17 ± 0.66a</td>
</tr>
<tr>
<td>Dissolved oxygen p.m. (mg/L)</td>
<td>6.05 ± 0.64a</td>
<td>5.79 ± 0.54a</td>
<td>6.00 ± 0.63a</td>
<td>5.96 ± 0.58a</td>
<td>5.84 ± 0.73a</td>
</tr>
<tr>
<td>pH a.m.</td>
<td>8.30 ± 0.09a</td>
<td>8.25 ± 0.10a</td>
<td>8.26 ± 0.10a</td>
<td>8.26 ± 0.08a</td>
<td>8.27 ± 0.13a</td>
</tr>
<tr>
<td>pH p.m.</td>
<td>8.22 ± 0.08a</td>
<td>8.18 ± 0.07a</td>
<td>8.20 ± 0.06a</td>
<td>8.20 ± 0.08a</td>
<td>8.23 ± 0.08a</td>
</tr>
<tr>
<td>Salinity (ppt)</td>
<td>32.65 ± 0.47a</td>
<td>33.56 ± 0.90a</td>
<td>33.45 ± 0.93a</td>
<td>33.50 ± 0.97a</td>
<td>32.72 ± 0.59a</td>
</tr>
<tr>
<td>Ammonia (mg/L)</td>
<td>0.39 ± 0.36a</td>
<td>0.15 ± 0.12a</td>
<td>0.14 ± 0.11a</td>
<td>0.12 ± 0.1a</td>
<td>0.21 ± 0.18a</td>
</tr>
<tr>
<td>Nitrite (mg/L)</td>
<td>5.88 ± 2.4a</td>
<td>4.65 ± 1.83ab</td>
<td>4.2 ± 1.5a</td>
<td>4.08 ± 1.6a</td>
<td>1.98 ± 0.84a</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>3.38 ± 1.4a</td>
<td>6.80 ± 3.40a</td>
<td>5.79 ± 2.67ab</td>
<td>4.77 ± 2.12ac</td>
<td>2.72 ± 1.03c</td>
</tr>
</tbody>
</table>

a.m. - before midday; p.m. - after midday
Values are expressed as mean±SD. Values in the same row with different letters are significantly different ($p<0.05$).
Table 2: Water parameters measured in experimental treatments.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Maximum feeding level</th>
<th>Medium feeding level</th>
<th>Minimum feeding level</th>
<th>Without pellet feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature a.m. (°C)</td>
<td>30.12 ± 0.76</td>
<td>30.20 ± 0.71</td>
<td>30.09 ± 0.72</td>
<td>30.06 ± 0.76</td>
<td>30.17 ± 0.82</td>
</tr>
<tr>
<td>Temperature p.m. (°C)</td>
<td>30.56 ± 0.56</td>
<td>30.61 ± 0.52</td>
<td>30.51 ± 0.55</td>
<td>30.53 ± 0.56</td>
<td>30.60 ± 0.53</td>
</tr>
<tr>
<td>Dissolved oxygen a.m. (mg/L)</td>
<td>6.36 ± 0.54</td>
<td>6.24 ± 0.51</td>
<td>6.27 ± 0.62</td>
<td>6.33 ± 0.57</td>
<td>6.17 ± 0.66</td>
</tr>
<tr>
<td>Dissolved oxygen p.m. (mg/L)</td>
<td>6.05 ± 0.64</td>
<td>5.79 ± 0.54</td>
<td>6.00 ± 0.63</td>
<td>5.96 ± 0.58</td>
<td>5.84 ± 0.73</td>
</tr>
<tr>
<td>pH a.m.</td>
<td>8.30 ± 0.09</td>
<td>8.25 ± 0.10</td>
<td>8.26 ± 0.10</td>
<td>8.26 ± 0.08</td>
<td>8.27 ± 0.13</td>
</tr>
<tr>
<td>pH p.m.</td>
<td>8.22 ± 0.08</td>
<td>8.18 ± 0.07</td>
<td>8.20 ± 0.06</td>
<td>8.20 ± 0.08</td>
<td>8.23 ± 0.08</td>
</tr>
<tr>
<td>Salinity (ppt)</td>
<td>32.65 ± 0.47</td>
<td>33.56 ± 0.90</td>
<td>33.45 ± 0.93</td>
<td>33.50 ± 0.97</td>
<td>32.72 ± 0.59</td>
</tr>
<tr>
<td>Ammonia (mg/L)</td>
<td>0.39 ± 0.36</td>
<td>0.15 ± 0.12</td>
<td>0.14 ± 0.11</td>
<td>0.12 ± 0.11</td>
<td>0.21 ± 0.18</td>
</tr>
<tr>
<td>Nitrite (mg/L)</td>
<td>5.88 ± 2.4</td>
<td>4.65 ± 1.83</td>
<td>4.2 ± 1.5</td>
<td>4.08 ± 1.6</td>
<td>1.98 ± 0.84</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>3.38 ± 1.4</td>
<td>6.80 ± 3.40</td>
<td>5.79 ± 2.67</td>
<td>4.77 ± 2.12</td>
<td>2.72 ± 1.03</td>
</tr>
</tbody>
</table>

a.m. - before midday; p.m. - after midday
Values are expressed as mean±SD. Values in the same row with different letters are significantly different (p<0.05).

Table 3: Growth performance Litopenaeus vannamei nursery in treatments based on different feeding levels in 32-days culture period.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Maximum feeding level</th>
<th>Medium feeding level</th>
<th>Minimum feeding level</th>
<th>Without pellet feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight gain (g)</td>
<td>1.36 ± 0.11</td>
<td>1.55 ± 0.16</td>
<td>1.527 ± 0.13</td>
<td>1.292 ± 0.100</td>
<td>0.654 ± 0.066</td>
</tr>
<tr>
<td>Length gain (mm)</td>
<td>30.50±1.86</td>
<td>33.62±2.08</td>
<td>33.38±1.68</td>
<td>29.33±1.70</td>
<td>18.40±1.44</td>
</tr>
<tr>
<td>Body weight index (%)</td>
<td>1828.7±154.9</td>
<td>2084.2±224.47</td>
<td>2051.4±175.49</td>
<td>1735.3±146.6</td>
<td>879.14±81.28</td>
</tr>
<tr>
<td>Growth rate (mg/day)</td>
<td>42.55±3.60</td>
<td>48.50±5.22</td>
<td>47.74±4.08</td>
<td>40.38±4.41</td>
<td>20.46±1.89</td>
</tr>
<tr>
<td>Survival rate (%)</td>
<td>86.66±0.88</td>
<td>90.25±1.73</td>
<td>90±1.33</td>
<td>84.87±1.17</td>
<td>98.20±0.44</td>
</tr>
<tr>
<td>Biomass gain (g)</td>
<td>153.4±12.99</td>
<td>182.1±19.61</td>
<td>178.7±15.29</td>
<td>142.6±12.04</td>
<td>83.58±7.72</td>
</tr>
<tr>
<td>SGR in weight (%/day)</td>
<td>9.25±0.25</td>
<td>9.64±0.32</td>
<td>9.59±0.25</td>
<td>9.09±0.26</td>
<td>7.13±0.27</td>
</tr>
<tr>
<td>SGR in length (%/day)</td>
<td>2.91±0.11</td>
<td>3.10±0.12</td>
<td>3.08±0.09</td>
<td>2.84±0.10</td>
<td>2.05±0.12</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>1.51±0.13</td>
<td>1.27±0.14</td>
<td>1.04±0.09</td>
<td>0.98±0.08</td>
<td>-</td>
</tr>
<tr>
<td>Feed efficiency (%)</td>
<td>65.95±5.58</td>
<td>78.27±8.43</td>
<td>96.03±8.21</td>
<td>101.99±8.61</td>
<td>-</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SD. Values in the same row with different letters are significantly different (p<0.05).

values of the parameters including weight gain, length gain, body weight index, growth rate, survival rate, biomass gain, specific growth rate (SGR) in weight, SGR in length, feed conversion ratio (FCR) and feed efficiency (FE) indicated significant differences among biofloc treatments and control treatment (p<0.05). There was no difference in Pacific white shrimp growth between maximum feeding level (15% BW/day) and medium feeding level (12% BW/day) treatments (p>0.05) in biofloc system.

It was also found that growth and survival in the medium feeding level zero- water exchange is better than control group with more feeding level.

Proximate analysis of shrimp body composition and biofloc samples are demonstrated in Table 4. Significant differences were observed between biofloc treatments and the control (p<0.05).
Table 4: Mean (± SD, n=3) values of proximate composition of shrimp body and biofloc (% dry weight) in different treatments at the end of experiment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dry matter (% DW)</th>
<th>Crude protein (% DW)</th>
<th>Crude lipid (% DW)</th>
<th>Ash (% DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>25.55± 0.38</td>
<td>75.91± 0.17</td>
<td>6.86± 0.06</td>
<td>10.98± 0.01</td>
</tr>
<tr>
<td>Control</td>
<td>25.29± 0.18</td>
<td>75.65± 0.20</td>
<td>7.07± 0.07</td>
<td>10.93± 0.02</td>
</tr>
<tr>
<td>Maximum feeding level</td>
<td>24.82± 0.17</td>
<td>75.84± 0.08</td>
<td>7.67± 0.06</td>
<td>11.12± 0.03</td>
</tr>
<tr>
<td>Medium feeding level</td>
<td>25.33± 0.77</td>
<td>75.81± 0.19</td>
<td>7.59± 0.05</td>
<td>11.26± 0.06</td>
</tr>
<tr>
<td>Minimum feeding level</td>
<td>25.96± 0.36</td>
<td>75.75± 0.28</td>
<td>7.47± 0.04</td>
<td>11.37± 0.02</td>
</tr>
<tr>
<td>Without pellet feeding</td>
<td>22.79± 0.35</td>
<td>74.03± 0.35</td>
<td>4.57± 0.09</td>
<td>15.91± 0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shrimp</th>
<th>Control</th>
<th>Maximum feeding level</th>
<th>Medium feeding level</th>
<th>Minimum feeding level</th>
<th>Without pellet feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>25.29± 0.18</td>
<td>24.40± 0.10</td>
<td>24.18± 0.30</td>
<td>24.88± 0.27</td>
<td>20.44± 1.07</td>
</tr>
<tr>
<td>Crude protein</td>
<td>75.91± 0.17</td>
<td>28.33± 1.52</td>
<td>27.1± 1.15</td>
<td>27.53± 1.74</td>
<td>21.37± 1.47</td>
</tr>
<tr>
<td>Crude lipid</td>
<td>6.86± 0.06</td>
<td>0.91± 0.04</td>
<td>0.71± 0.03</td>
<td>0.53± 0.05</td>
<td>0.39± 0.08</td>
</tr>
<tr>
<td>Ash</td>
<td>10.98± 0.01</td>
<td>40.63± 1.06</td>
<td>41.78± 0.39</td>
<td>40.59± 0.69</td>
<td>42.61± 0.50</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SD. Values in the same column with different letters are significantly different (p<0.05).

Figure 1: Mean values (±SD, N=3) of ammonia (A), nitrite (B) and nitrate (C) concentrations in water tanks of Pacific white shrimp cultivated at different feeding levels during the rearing period.
Figure 2: Mean (±SD, N=3) values of settled solids, SS (A), Total suspended solids, TSS (B) and water transparency (C) in tanks of Pacific white shrimp cultivated at different feeding levels during the rearing period (32 days).
Discussion

At the present study, the recorded water temperature, salinity, dissolved oxygen and pH remained within the optimal environmental ranges for Pacific white shrimp culture (Cohen et al., 2005). Values of dissolved oxygen and pH in biofloc treatments were lower than the control. This might be as a result of higher respiration rate due to the presence of a heterotrophic community that increased the carbon dioxide concentration in zero-water exchange systems (Wasielesky et al., 2006; Emerenciano et al., 2012). The proper value of pH for optimal performance in
penaeids family is 7–9 (Cohen et al., 2005) which is consistent with the result obtained from the present experiment. Dose not mentioned the results are agree with the references or not.

Salinity levels in biofloc treatments were higher than salinity levels in water exchange treatments, probably due to higher evaporation in zero- water exchange systems (Emerenciano et al., 2012). Salinity and temperature are the factors that affect the concentration of formed biofloc (Decamp et al., 2003) as with increasing salinity, particles tend to accumulate more and biofloc size increases (Hakanson, 2006; Avnimelech, 2007). In many reports, successful reduction of ammonia in limited/zero-exchange culture systems was demonstrated by the manipulation of the carbon to nitrogen ratio, implicating the assimilation of the inorganic nitrogen compounds and the production of microbial biomass (Ebeling et al., 2006; Samocha et al., 2007; Avnimelech 2009; Gao et al., 2012; Krummenauer et al., 2014). In the present study, the lowest ammonia concentration was found in biofloc treatment with minimum feeding level and a reduction in ammonia and nitrite levels was observed in biofloc treatment which was also quoted by Gaona et al., (2011).

Concentration reduction can be described as a major process in the uptake of inorganic nitrogen by heterotrophic and nitrifying bacteria that increased into the culture water with the biofloc. At the end of the experiment, total heterotroph bacteria count in biofloc treatments was significantly higher than the control.

Heterotroph bacteria in biofloc system are tiny; their assemblage with algae, protozoa and organic particles altogether create bioflocs that are unique ecosystems. These rich and energetic particles that are suspended in relatively poor water are porous, light and have a diameter of 0.1 to a few mm (Avnimelech, 2009). In the present study, results showed that the goal of molasses addition achieved by stimulating the growth of heterotrophic bacteria in the water, as evidenced by keeping ammonia and nitrite at low levels throughout the experiment. Addition of molasses could effectively increase the C/N ratios in tank culture which is suitable for bacterial growth (Emerenciano et al., 2012; Gao et al., 2012). As previously demonstrated, nitrifying and heterotrophic bacteria could play a main role in controlling ammonia emission in a super intensive shrimp culture (Vinatea et al., 2010; Gao et al., 2012).

Results of the present work on water quality parameter proved the results reported by Crab et al., 2010; Emerenciano et al., 2012; Gao et al., 2012 and Krummenauer et al., 2014.

The maximum SS and TSS concentration were observed in without pellet feeding treatment. The value of SS and TSS showed a steep decline on some days of the experiment which might be attributed to the consumption
of a large fraction of the biofloc available in the culture tank or changes in the composition and abundance of microbial organisms in the food chain as a result of ecological succession (Emerenciano et al., 2012). In zero-water exchange tanks, SS and TSS concentrations tend to increase over time which is primarily due to an increase in microbial biomass. The observed decrease in TSS content is associated with a decrease in settle solids (SS) concentration and increased water transparency. As recommended by previous researchers, the reasonable values of TSS are below 300 mg/L in an intensive shrimp nursery system (Mishra et al., 2008) and 123 and 414 mg/L for the minimum and maximum recorded values of TSS, respectively, in a limited water exchange nursery system (Emerenciano et al., 2012) that result of the present study was in accordance with the above proposed values.

There were significant differences between biofloc treatments and the control in growth performance. In general, the performance of Pacific white shrimp in zero-water exchange system was better than water exchange aquaculture system. This finding confirmed the results of different researches that showed improved shrimp performance and specific growth rate (Ballester et al., 2007; Khanjani et al., 2016), enhanced growth rate and weight gain (Xu and Pan, 2012), decreased feed conversion ratio (Wasiele Sky et al., 2006; Tidwell, et al., 2007; Xu and Pan, 2013, 2014), reduced feeding costs (Burford et al., 2004), improved feed utilization (Xu and Pan 2012), high survival rate (Kuhn et al., 2008; Mishra et al., 2008) and water quality improvement (Asaduzzaman et al., 2008; Arnold et al., 2009; Gao et al., 2012).

Commercial pelleted feeds may not provide the nutrients needed to grow shrimp. Some of the nutrients (vitamins and minerals) can be obtained from the biofloc generated in the tank. Therefore, the biofloc as a supplemental food source is used for shrimp (Xu and Pan 2012). Biofloc, as an alternative and rich food source produced in zero-water exchange nursery system, is available overtime 24 hours per day (Avnimelech, 2007) with highly diverse components consisting bacterial protein (Ballester et al., 2010; Hargreaves, 2013), and poly-β-hydroxybutyrate (PHB) created by bacteria (De Schryver et al., 2010), microalgae, protozoa, nematodes (Azim and Little 2007; Valle et al., 2015), copepods and rotifers (Ray et al., 2010).

The bacterial storage compound, poly-β-hydroxybutyrate (PHB) is a biodegradable polymer with several advantages including improved digestibility in intestine, increased unsaturated fatty acid and growth enhancement in fish and shrimp (Crab et al., 2007; Emerenciano et al., 2013). The maximum survival rate (98.20±0.44 %) of Pacific white shrimp was observed in treatment of without pellet feeding and containing only floc. The
recorded survival rates for Pacific white shrimp at nursery stage ranged from 55.9% to 100 (Mishra et al., 2008) and 97% to 100% (Cohen et al., 2005) in biofloc system. Improved survival rates due to biofloc consumption with nutritional benefits, which is provided by high natural productivity characteristic, have been proposed by several researchers (Wasielesky et al., 2006; Supono et al., 2014). In the present study, there was no difference in shrimp growth between maximum feeding level and medium feeding level treatments. It was also found that over 20% of daily feed intake can be replaced with biofloc in Pacific white shrimp culture.

Previous researches have shown that microbial biomass could include up to 29% of daily food consumption in shrimp (Burford et al., 2004). In biofloc treatments cleared using microbial proteins as a partial source of protein and not as the only one feed for shrimp.

Megahed and Mohamed (2014) reported that the dietary protein level could be reduced from 45% to 25% without affecting the growth by using the present biofloc in Indian white shrimp (Fenneropenaeus indicus) culture.

Biochemical composition of biofloc could provide important nutrient contents such as protein, lipids, and minerals. Other researchers reported that biofloc could provide amino acids, fatty acids and vitamins for shrimp (Izquierdo, et al., 2006; Logan et al., 2010; Emerenciano et al., 2012).

Proximate analysis of biofloc including crude protein, lipids and ash content were recorded 30.4%, 1.9% and 38.9%, respectively, by Ju et al (2008) and 18.2-29.3 %, 0.4-0.7% and 43.7-51.8%, respectively, by Emerenciano et al., (2013) which was in agreement with the result of the present work. In microbial particles, protein, lipid and ash content could vary substantially (12- 49 %, 0.5-12.5 % and 13 to 46%, respectively) (Emerenciano et al., 2013).

In proximate analysis, nutritional characteristics of biofloc could be affected by environmental condition, carbon source used, TSS level, salinity, stocking density, light intensity, phytoplankton, zooplankton and bacterial communities (Emerenciano et al., 2013). The results showed that proximate analysis of body composition in shrimp is influenced by the presence of biofloc and confirmed that crude lipid and ash content of shrimp in biofloc treatments tended to increase as compared to the control. The body color of the shrimp fed on biofloc was darker than shrimp clear water treatment. In a previous study by Xu and Pan (2012), the recorded proximate analysis of the whole body composition (% wet weight) in juvenile Pacific white shrimp in the control and two bioflocs treatments with C/N ratios of 15 and 20, respectively, were 17.96, 18.78, 18.53 for crude protein; 2.65, 2.82, 2.85 for ash and 1.80, 1.91, 1.96 for crude lipid, respectively, at the end of 30-day feeding experiment. More increase in lipid content of body
composition might be attributed to the assimilation of several essential fatty acids (PUFA and HUFA), amino acids (methionine, lysine) from the bioflocs that were consumed by the shrimp (Izquierdo et al., 2006; Ju et al., 2008; Supono, et al., 2014). Increased ash content of the shrimp body composition might be due to continuous availability of abundant minerals and trace elements especially phosphorus from the biofloc (Tacon et al., 2002; Xu and Pan 2012) that was confirmed by high ash content observed in the present study.

Natural microbial community can affect biochemical composition of the floc and shrimp. Protozoan present in biofloc contain sterols in their chemical composition, and a large portion of these sterols is converted to cholesterol or other lipid forms (Loureiro et al., 2012).

In conclusion, results of the present study indicated that BFT system was beneficial for Pacific white shrimp by the maintenance of water quality, improving growth performance, increasing feed efficiency, biosecurity and survival rate, reducing FCR, feeding costs, water use, and daily food intake compared with commercial pellet. Also, this study confirmed that shrimp body composition by increasing nutrient retention could be influenced with bioflocs consumption. According to the results, the necessity of using this new technique can be felt in the country’s aquaculture industry and especially in the Pacific white shrimp intensive culture in greenhouse-based farms.

Acknowledgements
We would like to thank and appreciate the Director General and Deputy of Hormozgan Fisheries Organization (Iran), the management department and all staff working at the propagation and cultivation aquatic center, Bandar Kolahi- Minab- Hormozgan- Iran. We also appreciate aquaculture engineers, Masandani, Sirpur, Darvishi, Mohammadi and Eslami for providing research facilities which ultimately helped us execute successfully this experiment.

References
Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A. and Azim, M.E., 2008. C/N ratio control and substrate addition for periphyton development...

De Schryver, P., Crab, R., Defoirdt, T., Boon, N. and Verstraete, W., 2008. The basics of bio-flocs technology: the added value for aquaculture. *Aquaculture*, 277, 125–137.

Emerenciano, M., Gaxiola, G. and Cuzon, G., 2013. Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed.) Biomass now – Cultivation and utilization, In Tech, Queen’s University, Belfast, Canada, pp. 301–328.

Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L. and Flick, G.J., 2010. Evaluation of two types of biofloc derived from biological treatment of fish effluent as feed ingredients for...

