Feeding *Artemia* larvae with yeast heat shock proteins 82 (HSPs82) to enhance the resistance against abiotic stresses (hyperosmotic and high temperatures)

Shekarchi B.¹; Nekuiefard A.¹*; Manaffar R.²

Received: June 2016 Accepted: July 2017

Abstract

Feeding farmed *Artemia* with yeast heat shock proteins is a novel way to protect them from stress conditions during the culture. In this study, the effect of feeding with stressed new identified *Saccharomyces cerevisiae strain YG3-1* yeasts (containing induced heat shock proteins) on the survival of *Artemia* in stress conditions, was evaluated. For this purpose, heat shock proteins 82 (Hsps 82) of mentioned yeasts were induced by applying the high thermal (30, 35 and 40 °C) and high salinity (60, 120, 180 and 240 g L⁻¹) stresses. After that, two different species of *Artemia* (*Artemia urmiana* and *A. franciscana*) were fed with treated yeasts during the culture. Then, to investigate the effects of *S. cerevisiae strain YG3-1* Hsps82 on *Artemia* survival, after the end of feeding, adult individuals of both species were exposed to authorized high salinity (230 g L⁻¹ and 280 g L⁻¹) and authorized high temperature (35 °C and 37 °C) as permitted stress for 48 h (hours). Finally, this administration resulted in the resistance of both species against the high salinity and high temperature (*p*<0.05). This result was confirmed by analysing total protein of *Artemia* using SDS-PAGE, and suggests that this administration can be used for enhancing the survival of *Artemia* in stress conditions.

Keywords: *Artemia*, Heat shock proteins, *Saccharomyces cerevisiae*, Stress, Survival

¹-National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Urmieh, Iran,
²-Department of Biotechnology, Urmia Lake Research Institute, Urmia University, Urmieh, Iran
*Corresponding author's Email: dr.nekuiefard@gmail.com
Introduction

Artemia is one of the most important live foods in aquaculture (Garcia et al., 2008), and is favored as a model organism for use in aquaculture biotechnology (Gavanda et al., 2007). Heat shock proteins (Hsps) are a large class of proteins (Tkáčová and Angelovičová, 2012), and play a key role in the process of protein metabolism under normal and stress conditions, including the refolding of denatured protein, maintenance of structure integrity and other regulatory processes (Qin et al., 2016). An increased accumulation of Hsps is essential for the survival of cells exposed to various stresses (Li et al., 2006). There are multiple stressors in a changing world (Gunderson et al., 2016). For example, the effects of global warming include rising mean annual temperatures and dramatic increase in the frequency and amplitude of severe temperature events (Xu et al., 2016). So, farmed aquatic organisms experience many different environmental stresses including temperature fluctuation and salinity shift during culture (Aleng et al., 2015). The production of heat shock proteins is one of the classical cellular responses of all organisms to environmental insult (Clark et al., 2008). The enhanced expression of heat shock proteins in aquatic organisms can be detected in response to many kinds of the stressor (Shi et al., 2015). Heat shock proteins are a kind of resistance mechanisms against environmental stresses such as hyperosmotic and high temperatures in Artemia and other aquatic crustaceans (Sankian et al., 2011). Enhancement of Hsps synthesis promotes resistance of aquatic organisms against stress conditions (Sung et al., 2012). Heat shock proteins can be produced in these organisms by exposure to stress (Sung et al., 2008; Givskov Sorensen, 2010), and also through feeding with single cell organisms (Probiotics) containing induced Hsps (Sung et al., 2009a). Examples include observations on Hsp70-induced thermotolerance generated in common carp (Cyprinus carpio L.,) against lethal ammonia toxicity and in coho salmon (Oncorhynchus kisutch) as result of a sublethal heat shock (Sung et al., 2012; Arkush et al., 2008). In another study, feeding with bacterial heat shock proteins protected Artemia franciscana larvae from Vibrio campbellii infection (Sung et al., 2009a). Feeding of bacterially encapsulated heat shock proteins to invertebrates is a novel way to limit Vibrio infection. As an example, ingestion of Escherichia coli overproducing prokaryotic Hsps significantly improves survival of gnotobiotically cultured Artemia larvae upon challenge with pathogenic V. campbellii (Sung et al., 2009b). Considering that in recent years researchers have investigated that the heat shock proteins play many important roles in aquatic organisms including Artemia and other aquatic crustaceans (Chaurasia et al., 2015), potential applications for Hsps in the commercial production of fish, crustaceans and other aquatic organisms are indicated (Sung et al., 2011). In the present study the effect of feeding
larvae and adult individuals of *Artemia* with stressed new identified *Saccharomyces cerevisiae* strain YG3-1 yeasts containing induced heat shock proteins 82 (Hsps82) as a novel way for enhancing the survival of *Artemia* in stress conditions was evaluated in larvae and adult individuals of *Artemia urmiana* and *Artemia franciscana* as test organisms. However, effects of live yeasts (*S. cerevisiae* strains) supplementation on the performance of aquatic organisms have been studied previously (Perrone *et al.*, 2013), but the effect of new identified *S. cerevisiae* strain YG3-1 yeasts containing induced Hsps82 on the survival of *Artemia* and other aquatic organisms has not been studied until now. Hsp82 is a member of Hsp90 family in yeast. Members of the Hsp90 family stabilize misfolded proteins and interact with regulatory signaling proteins in yeasts (Seppä, 2005) and play important roles in multiple cellular stress responses of aquatic organisms (Wang *et al.*, 2016). Based on the findings mentioned previously, the present study was performed to investigate the effect of the function of Hsps82 (belonging to the *S. cerevisiae* strain YG3-1) on the survival of *Artemia* in stress conditions.

Materials and methods

Preparation of *S. cerevisiae* YG3-1 yeasts

All of the yeasts used in the present study were isolated from the intestine of endemic farmed rainbow trout (*Oncorhynchus mykiss*) in the West Azerbaijan province of Iran according to the procedure as described previously (Andlid *et al.*, 1995), and then identified by molecular methods as a new strain of *S. cerevisiae* yeasts.

Induction of Hsp82 proteins in yeasts

For this purpose, yeasts were cultured and grown using the yeast extract-peptone-glycerol (YPG) medium. In the stationary growth phase (after 3 days) yeast cells were harvested by centrifugation (5000 rpm for 10 m minutes)) (Aoki *et al.*, 2002). Then, harvested yeasts were divided into three groups and stored at -20 °C. After that, production of Hsps82 was stimulated in the two groups of stored yeasts. In this way, heat shocks (30, 35 and 40 °C) were applied on yeasts in one group of them. At the same time, yeasts in the other group were exposed to high salinity (60, 120, 180 and 240 g L⁻¹) as stress. Both stresses were performed for 4 h (hours) (Sathiyaa *et al.*, 2001). Reverse transcription PCR (RT-PCR) was used to study the expression of *hsp* genes in the yeasts. Total RNA was isolated from each yeast sample and single-strand cDNA (complementary DNA) was synthesized from mRNA (messenger RNA that extracted from total RNA) using by 2-steps RT-PCR-Kit. Before synthesis, RNA concentration and quality had been verified using Biophotometer (Eppendorf Biophotometer plus, Germany). Then, the cDNA fragments were amplified (using Cinnagen Co PCR-Kit) using specific *hsp* primers combination as a forward primer (Hsp82forward 5’-AGT-TGC-CGA-CAG-AGT-TCA-GGT-TA-3’) and a reverse
primer (Hsp82_reverse 5'-AGA-ACC-ACC-ACG-GTT-GGA-TT-3'). These primers previously had been designed using the Oligo software and produced by Cinnagene Co. PCR thermal cycling parameters for these specific primers were somewhat modified as: 35 cycles of 95 °C for 30 s (seconds), 45 °C for 40 s, 72 °C for 40 s with final extension of 72 °C for 5 min for amplification of hsp82. This program was applied with the Master cycler gradient Eppendorf thermal cycler. After amplification, all products were run on the 1.6% agarose gel electrophoresis, stained with ethidium bromide and visualized in a UV-transilluminator contained CCD camera (Sankian et al., 2011).

Culture and feeding Artemia with yeast Hsps

Cyst samples (cysts of Artemia urmiana and Artemia franciscana) were obtained from the cyst bank of Urmia Lake Research Institute at Urmia University, Urmia, Iran. For optimal hatching, 1.5 g cysts of each population was incubated in artificial 0.45 μm filtered medium at a salinity of 35 g L⁻¹. After hatching, 500 individuals of instar-I nauplii were transferred directly into the 1 cylindroconical vials at an initial density of 2 nauplii ml⁻¹ of 80 g L⁻¹ culture medium (Sankian et al., 2011). Finally, according to the standard protocol culture was performed in two treatments and four replicates for each treatment. Air during culturing was passed through a 0.22-μm filter (Van Stappen et al., 1996). During the culture, both species of Artemia (A. urmiana and A. franciscana) were fed with two forms of yeast S. cerevisiae YG3-1; 1) Yeasts without any treatment (as Control treatment), 2) Yeasts with induced Hsp82 (combination of yeasts that were exposed to thermal and osmotic stresses as Hsp treatment), plus live Dunaliella tertiolecta algae. Feeding was performed in accordance with a feeding table which was adopted from a previously established procedure (Coutteau et al., 1990).

Stress of Artemia; Determination of induced tolerance to stress in Artemia and statistical analysis

After the end of feeding, adult individuals of both species were exposed to high salinity (230 g L⁻¹ and 280 g L⁻¹) and high temperature (35 °C and 37 °C) as permitted stress for 48 h (hours). They were fed with live D.tertiolecta algae during the stress (Sung et al., 2008; Sankian et al., 2011). Stresses were applied based on the guidelines (standard protocols adopted from previous literature) and in accordance with animals experimentations ethics and were approved by the Animal Experimentation Ethics Committee of the Urmia University, Urmia, Iran. To evaluate the effects of feeding with induced Hsp82 of S. cerevisiae strain YG3-1 yeasts on the survival and stress resistance of Artemia, numbers of swimming larvae were determined and the survival percentage was calculated. Mortality and survival were compared by means of one-way ANOVA. The results of survival were expressed as percentage. One-way ANOVA and Duncan’s test of SPSS16 software were
used to identify differences among means, and significances were accepted at $p<0.05$ (Baxevanis et al., 2004).

Protein extraction and sample preparation for SDS–PAGE

The whole body of adult *Artemia* individuals which survived from stresses was pulverized in 1.5 ml micro tube by appropriate tips. Then, 100 mg of the resulting powder, consisting of 10-15 adult *Artemia* individuals of both species, was homogenized in 500 µl of protein extraction buffer, containing buffer K (5 mM MgCl2, 5 mM NaH2PO4, 40 mM Hepes, 70 mM Potassium gluconate, 150 mM Sorbitol, pH 6.5) and protease inhibitor cocktail (Invitogene™ Mini from Roche Diagnostics GmbH). Protein concentration was determined by the Bio photometer (Eppendorf Biophotometer plus, Germany). Samples were heated at 95 °C for 5 min and subsequently cooled. After that, insoluble fragments were removed by low speed centrifugation (1600 rpm for 5 min) and then supernatants were electrophoresed (Clegg et al., 2000; Sankian et al., 2011).

SDS polyacrylamide gel electrophoresis (SDS–PAGE)

Flatbed SDS-PAGE was performed with a vertical system (BioRad System, USA). 10 % total acrylamide gel with 100x70x0.5 mm dimensions was prepared. 30 µl of samples were loaded on each gel track (Clegg et al., 2000; Sankian et al., 2011). The running buffer was prepared according to the described procedure previously (Diezel et al., 1972). The buffer system in the strips formed a discontinuous buffer system together with the gel buffer. High molecular weight (250 KD) Ladder (Marker) was used for the detection of protein bonds on the gel. Electrophoresis was performed at a constant current of 50 mA (milli-ampere) in BioRad electrophoretic apparatus with power supply, set at 150V for 1 h. The gel was stained with Coomassie blue G250 (Clegg et al., 2000; Sankian et al., 2011).

Results

RT-PCR results

Investigation of gene expression in stressed yeasts has shown that under different temperature and salinity, the Hsps gene expression of these yeasts has changed. So, the stress enhances the mRNA transcripts of Hsps in stressed yeast cells. RT-PCR gel electrophoresis of *hsps* genes expression indicated that 4h exposure to all of the stresses resulted in expression of *hsps82* genes in *S. cerevisiae YG3-1*. Intensity of cDNA bands has shown that the temperature 35 °C and salinity 60 g L$^{-1}$ are the best conditions for expression of Hsps genes in *S. cerevisiae YG3-1* (Fig. 1).
Enhanced survival of Artemia in stress conditions

Survival of *Artemia* individuals that were fed with Hsps in stress conditions significantly was improved and enhanced as compared to control *Artemia* individuals fed with non-stressed yeasts (*p*<0.05). So among the stressed *Artemia* adult individuals, the minimum percentage of survival in individuals of *A. urmiana* wasn't less than 60 % and Hsp-fed individuals in *A. franciscana* samples exhibited the highest survival (Table 1).

Table 1: Survival of *Artemia urmiana* and *A. franciscana*.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Day 7</th>
<th>Day 11</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control/A. urmiana</td>
<td>89.50±17.90<sup>a</sup></td>
<td>80.35±16.05<sup>a</sup></td>
<td>77.75±15.55<sup>a</sup></td>
</tr>
<tr>
<td>HSP/A. urmiana</td>
<td>89.99±17.99<sup>a</sup></td>
<td>83.35±16.69<sup>a</sup></td>
<td>80.95±17.55<sup>a</sup></td>
</tr>
<tr>
<td>Control/A. franciscana</td>
<td>89.75±17.55<sup>a</sup></td>
<td>82.50±16.40<sup>a</sup></td>
<td>78.45±15.69<sup>b</sup></td>
</tr>
<tr>
<td>HSP/A. franciscana</td>
<td>91.75±14.94<sup>b</sup></td>
<td>89.75±17.55<sup>b</sup></td>
<td>81.80±16.16<sup>b</sup></td>
</tr>
</tbody>
</table>

Same characters in each column indicate insignificant differentiation. Staining of SDS polyacrylamide gels (SDS-PAGE of the survived adult *Artemia* in high salinity and high temperature) clearly demonstrated increased amounts of almost 80-kDa polypeptides in *Artemia* samples fed with yeast Hsps. While, *Artemia* individuals that fed with control yeast cells (non-stressed yeast cells with no Hsp) do not produce Hsp (Fig. 2).

Synthesis of Hsps in Artemia

Figure 1: Semi quantitative RT-PCR gel electrophoresis of HSP 82 expression in various samples of *Saccharomyces cerevisiae YG3-1*. M: Marker (1 Kb ladder), lane 1: expressed HSP at 30 °C, lane 2: 35 °C, lane 3: 40 °C, lane 4: expressed HSP at salinity 60 g L⁻¹, lane 5: 120 g L⁻¹, lane 6: 180 g L⁻¹, lane 7: 240 g L⁻¹, lane 8: negative sample, lane 9: control. Semi quantitative RT-PCR revealed that the stress enhances the mRNA transcript of Hsp in stressed yeast cells. Intensity of bands shows the temperature 35 °C and salinity 60 g L⁻¹ are the best conditions for expression of Hsps genes.
Discussion

The results of this study showed that feeding *Artemia* with induced Hsps of *S. cerevisiae* resulted in the induction of Hsp production in *Artemia* and confirmed that this feeding resulted in resistance of *Artemia* against stress. Maybe following the dietary administration with stimulated Hsp82 of *S. cerevisiae* strain *YG3-1* yeasts, chaperone activities of Hsp82 in *Artemia* were induced and these activities have resulted in stress tolerance in *Artemia*. Before this, ingestion of *E. coli* over-producing *Artemia* Hsp70 shelters brine shrimp against *V. campbellii*, possibly by triggering the innate immune response to produce anti-inflammatory substances and suppress infection. DnaK and *Artemia* Hsp70 exhibit 59.6% similarity in the peptide-binding domain and the protective capacity of these proteins, termed the innate immunity-activation portion, may reside within this molecular domain, a conclusion similar to that made for Hsp70 from dendritic cells (Sung et al., 2009b; Sung and Macrae, 2011). In the present study, maybe there was a similarity in the domain of yeast Hsp82 and *Artemia* Hsps (that following the feeding with Hsp-enriched yeasts made from hemocytes of *Artemia*). Possibly, this similarity, has resulted in the induced-production of Hsps in *Artemia*. In addition, Hsps appear to stimulate the innate immune response of aquatic organisms and reinforce the function of the immune system (Sung and Macrae, 2011). Reinforcement of immune system function helps resistance against stressors and therefore enhances the survival in stress conditions (Aleng et al., 2015). In the present study, yeast Hsp82 may reinforce the immune system function of *Artemia* individuals and so enhance their survival against stress conditions (hyperthermal and hyperosmotic stresses). Families of heat shock proteins, otherwise known as stress proteins or molecular chaperones,
consist of conserved molecules found in all organisms. The expression of genes encoding Hsps is either constitutive or induced by stress and their products are essential for cell survival. Under normal conditions Hsps mediate nascent protein folding and assembly, translocate proteins through membranes into organelles such as mitochondria, and assist in the degradation of structurally aberrant proteins. Hsps, often when functioning cooperatively with one another, prevent the irreversible denaturation of proteins exposed to physiological stressors such as heat, toxins and disease, thereby facilitating protein refolding and protecting cells from damage (Sung and Macrae, 2011). Heat shock proteins were reported to induce and enhance the resistance of aquatic invertebrates including crustaceans such as Artemia and shrimp against environmental stress. Also, previous studies showed that Hsps can be induced by external stresses. For example, expression of 90 KDa heat shock proteins in the brine shrimp Artemia Leach 1819, in response to high salinity stress protected Artemia against the high salinity stress (Sankian et al., 2011). In addition, exposure of gnotobiotic A. franciscana larvae to abiotic stress (hypothermic and hyperthermic shocks) promoted heat shock protein 70 synthesis and enhanced resistance to pathogenic V. campbellii and showed a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system (Sung et al., 2008). In many studies heat shock proteins have been used to enhance the stress tolerance in aquatic crustaceans such as Artemia and shrimp. Heat shock proteins can not only be produced by stress in all living animals, but can also be absorbed externally. Feeding of bacterially encapsulated heat shock proteins to invertebrates is a novel way to limit Vibrio infection. As an example, ingestion of E. coli overproducing prokaryotic Hsps significantly improves survival of gnotobiotically cultured Artemia larvae upon challenge with pathogenic V. campbellii (Sung et al., 2009b). Moreover, feeding with non-pathogenic strains of E.coli including YS1, YS2 (containing 70-kDa bacterial Hsp, DnaK) and A native (containing Artemia Hsp70 cDNA) containing induced Hsp70 proteins conferred protection to A. franciscana individuals against V. campbellii infection and enhanced their length (Baruah et al., 2010). In a similar study, feeding with bacterial heat shock protein protected A. franciscana (Kellogg) larvae from V. campbellii infection (Sung et al., 2009a). The described experiments showed HSPs can elevate survival performance of aquatic crustaceans in stressor conditions. Also, considering these results, feeding with yeast heat shock proteins can be considered as a novel way to make Artemia and other aquatic crustaceans resistant against stress conditions. As mentioned previously, effect of feeding with S. cerevisiae strain YG3-1 yeasts containing induced heat shock proteins 82 on the survival of Artemia in the present study was
evaluated and resulted in resistance of Artemia urmiana and Artemia franciscana (as a model organisms) against abiotic stress. The results of this study suggest that described yeasts can be used to protect the other species of Artemia from various abiotic stresses during culture. Previously, effects of β-glucan polysaccharides of 2-mercaptoethanol (2ME)-treated S.cerevisiae strain YG3-1 on the growth of Artemia were investigated (Shekarchi et al., 2016), but the effect of Hsps82 of S.cerevisiae strain YG3-1 on the survival of Artemia in stress conditions has not been studied until now. So, considering the adverse side effects of antibiotics on the public health of aquatic organisms in the long term (Nikkhoo et al., 2010), this administration can be used as a novel safe way to enhance the performance (improving growth and survival) of farmed Artemia during the culture.

Acknowledgments
This study was supported by the Iranian Fisheries Science Research Institute, National Artemia Research Center, Agricultural Research Education and Extension Organization (Grant No. SH/T/93/117). We thanks people in National Artemia Research Center and Urmia Lake Research Institute at Urmia, Iran, for their advice and invaluable assistance.

References

Baruah, K., Ranjan, J., Sorgeloos, P. and Bossier, P., 2010. Efficacy of heterologous and homologous heat shock protein 70s as protective Agents to Artemia franciscana challenged with Vibrio campbellii. Fish and Shellfish Immunology, 29, 733-739.

Chaurasia, M.K., Nizam, F., Ravichandran, G., Arasu, M.V., Al-Dhabi, N.A., Arshad, A.,
Elumala, P. and Arockiaraj, J., 2015. Molecular importance of prawn large heat shock proteins 60, 70 and 90. *Fish and Shellfish Immunology*, 48, 228-238.

Sung, Y.Y., H. MacRae, T., Sorgeloos, P. and Bossier, P., 2011. Stress response for disease control in

