The effect of created hemolymph apoptosis on WSSV Gama-vaccinated shrimp, *Litopenaeus vannamei* in WSSV disease control

Kakoolaki S. *1; Afsharnasab M.1; Sharifpour I.1; Ghaednia B.2

Received: January 2014 Accepted: July 2015

Abstract
White spot syndrome virus (WSSV) is the causative agent responsible for huge-shrimp viral epidemics in shrimp farms throughout the world. Our study was aimed to determine the effect of WSSV Gamma-vaccinated *Litopenaeus vannamei* on the occurrence of apoptosis. One thousand and twenty PL15 were randomly distributed among 2 treatments and two control groups. Gama-Vaccinated shrimp and non-Gamma-vaccinated ones were our treated and untreated groups. Based on our results significant differences ($p<0.05$) were observed in survival percent between vaccinated-exposed group (82.33±2.51) and non-vaccinated exposed group (26.00±10.00). It is concluded that apoptosis can be a helpful process in enhancing the immune response in shrimp especially against WSSV.

Keywords: Apoptosis, Hemolymph, WSSV, *Litopenaeus vannamei*

1-Department of Aquatic Animal Health & Diseases, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEEO), Tehran, Iran
2-Iranian Fisheries Science Research Institute, Shrimp Research Center, Agricultural Research Education and Extension Organization (AREEEO), Bushehr, Iran
Corresponding author’s email: bsh443@gmail.com
Introduction

White spot syndrome virus (WSSV) is the causative agent of huge-shrimp viral epidemics, which can reach a cumulative mortality of 100% within several days (Lightner, 1996) in crustacean, particularly in cultured penaeid shrimp (Afsharnasab, 2007). Since its first identification in 1992 (Lightner, 1992), so many farmers have suffered from yield losses due to serious economic damage to the shrimp aquaculture industry worldwide (Flegel and Alay-Sanz, 1998; Lightner, 2011; Afsharnasab, 2012). There is no evidence regarding treatment strategies available against WSSV (Witteveldt et al., 2007) and studies that address the application of chemotherapy as control are few (Park et al., 2004). Temperature strategy was studied to decrease the mortality of shrimp when water temperature rose to over 29°C (Kakoolaki et al., 2011b). An intramuscular injection of inactivated WSSV vaccines in kuruma shrimp produced mixed protection results, while heat-inactivated WSSV did not induce resistance in shrimp (Namikoshi et al., 2004). Apoptosis, a process expressing programmed cell death, is considered as an important hemocyte defense mechanism that prohibits viral replication and eliminates infected cells in multicellular organisms (Everett and Mcfadden, 1999). Apoptosis occurs through energy-dependent biochemical reactions accompanied by distinctive morphological traits, including chromatin denseness, cell plica and fragmentation of the cell body (Kerr et al., 1972). The natural pathway of apoptosis is initiated by signals created within the cells (Wang et al., 2008). Examples of the signals include oxidative stress, viral infection and decline of cell survival factors. All these signals are led through the mitochondria, causing changes in the inner mitochondrial membrane, and ultimately, followed by the release of separated pro-apoptotic proteins from the inter-membrane space of the mitochondria into the cytoplasm (Saelens et al., 2004). According to Jiann-Horng Leu (2013) there are at least two anti-apoptotic proteins in WSSV to prohibit the mechanism in the infected cells. AAP-1, which acts as carapace inhibitor, and WSV222, which is an E3 ubiquitin ligase that prevents apoptosis through the declining of TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. As other animal pathogens, WSSV induces apoptosis that occurs in cells without WSSV virions (Best, 2008). The first observation of apoptosis was recorded in moribund and infected shrimp, many years ago (Henderson and Stuck, 1999). The objective of our study was to determine the effect of WSSV Gamma-vaccinated L. vannamei on the occurrence of apoptosis.
Materials and methods
Animals and experiment protocol
Some post larvae (PL_{12}) shrimp, *L. vannamei* with negative WSSV PCR result were obtained from a research hatchery and transferred to Iran Shrimp Research Center located in Bushehr Province, southern Iran. Shrimp were then acclimated to the optimum conditions (Kakoolaki *et al*., 2013) for 3 days. One thousand and twenty PL_{15} were randomly collected and distributed among 2 treatments as group 1(Gama-Vaccinated, Exposed to WSSV), group 2(Gama-Vaccinated, Non-Exposed to WSSV), group 3 (Non-Vaccinated, Exposed to WSSV) as the positive control and group 4(Non-Vaccinated, Non-Exposed to WSSV) as the negative control. Twelve 100 l fiberglass tanks were used for rearing the shrimp during the experiment (20 days).

Collected infected hemolymph was gamma irradiated to 15 kGy to inactivate virus as vaccine and stored at -70°C until the experiment. The vaccine with LD_{50}=1\times10^{5.4}.mL^{-1} was added to water (1:20 ratio as a volume of vaccine per 20 g weight of shrimp) of the vaccinated treatments.

The survival rate of shrimp was calculated daily by recording the shrimp mortality.

Preparation of WSSV stock solution
Virus with the titre of LD_{50}=1\times10^{5.4} and code no. WSV/irn/1/2011 prepared in Motamed Laboratory in Iran was used in challenging our treatments but control groups were left untreated. The mixture was stored at -80°C until use (Motamed Sedeh *et al*., 2012). After acclimation, Shrimps viruses were added to water reaching the volume to 10^{2}.LD_{50}.

Hemolymph examinations
After mortality observation, 0.2mL of hemolymph was withdrawn from the basement sinus of the second leg of 3 moribund shrimp from each of the replicates in treatments and controls, using 1 mL syringe along with 26 gauge needle. Each syringe was pre-filled with 0.8 mL Alsever solution as anticoagulant (Kakoolaki *et al*., 2010; Kondo, 2003). Differentiated Hemocyte Count (DHC)
0.2 mL of withdrawn hemolymph was pre-filled with 0.1 mL fixative. DHC was carried out using a slide; a drop of mixture solution was then placed on it and stained with May-Grundwald Giemsa (MGG) method. The method for fixation and staining of the hemolymph was carried out based on the new methods given in previous studies(Kakoolaki *et al*., 2011a)

Statistical analysis
One Way-ANOVA and Bonferroni multi-comparison tests were carried out to determine the differentiated hemocyte percents among the whole groups when parametric data were applied but the survival percents of different groups were compared using the nonparametric Kruskal- Wallis test.
When the Kruskal-Wallis test showed the significant differences between the groupsthe Mann-Whitney test was used to compare the differences between two independent groups.

Results

The different types of hemocytes with each dedicated percent are listed in Table 1. The percent of semi-granular cellswas the highest in the non-vaccinated- non-exposed group (85.00±1.87) and minimum percent belonged to the vaccinated –exposed group (31.40±3.04). The maximum percent for granular cell belonged to vaccinated- exposed group (51.40±2.07) and the minimum percent was seen in the no vaccinated- non-exposed group (9.20 ±1.92) but in case of hyalinocyte the maximum percent reached was 17.60±2.07 in the vaccinated–exposed group and the minimum percent was observed in the no vaccinated- non exposed group (5.80±0.83). Based on Fig. 3 the hemocytes of vaccinated shrimp were more induced to defend against pathogens. No apoptosis were observed in Fig. 4.

According to Table 1 no severe apoptosis was observed in shrimp hemolymph of group 1. Based on Fig. 2, it seems an extensive apoptosis occurred in shrimp hemolymphin the vaccinated group. This type of apoptosis (extensive) can cause a hemolymph disorder and may lead the immune system to a deficient status that make shrimp susceptible to WSSV or other probable disease. There were significant differences ($K=7.20$, $df=2$, $p=0.027$) among the survival percent-rank orders of groups. According to our results (Table 2) the survival percent of the non vaccinated-exposed group showed the lowest value and the difference between the survival percent of this group and that of the vaccinated-exposed group was 56%, approximately. This percent indicates that vaccinated shrimp are more resistant to WSSV.

Discussion

Apoptosis can be an effective process against WSSV (Wang et al., 2002). Kakoolaki et al. (2012) found out 10µL of active WSSV with the titre of LD$_{50}=1\times10^{5.4}$ induces apoptosis with very low mortality rate occurring after 20 days while 50 µL of that causes severe mortality beginning 36 hours after injection in specific pathogen free (SPF) shrimp, *L. vannamei*. With regards to WSSV-infected cells, apoptosis can serve as a two-edged blade so that if occurrence of apoptosis is limited, it can eliminate the virions and cell debris but if it is extensive, apoptosis will be harmful for cells and tissues and cause death among the infected hosts (Wang et al., 2008; Leu et al., 2013). Our results lead us to suppose that the extensive type of apoptosis is harmful to immune system against WSSV. In this case, our result is in agreement with the findings of other researchers who showed that if occurrence of apoptosis occurred in the late phase of viral infection, it causes mortality and distribution of infection in the host body and population without triggering inflammatory responses (Everett and Mcfadden, 1999; Best, 2008).
Table 1: The percent of differentiated hemocytes of in different treatments and controls
(Mean±SEM, n=10).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-granular</td>
<td>31.40±3.04a</td>
<td>33.00±4.41a</td>
<td>66.00±3.80</td>
<td>85.00±1.87</td>
</tr>
<tr>
<td>Granular</td>
<td>51.40±2.07a</td>
<td>50.60±2.50a</td>
<td>24.80±1.92</td>
<td>9.20±1.92</td>
</tr>
<tr>
<td>Hyaline</td>
<td>17.60±2.07a</td>
<td>16.40±2.19a</td>
<td>9.20±2.58</td>
<td>5.80±0.83</td>
</tr>
</tbody>
</table>

Similar superscripts in each row show no changes observed between values (α=.05)

*This shrimp were accompanying with mild apoptosis
**This shrimp were accompanying with severe or extensive apoptosis

Table 2: The survival percent of different treatments and controls 20 days after inoculation given as Mean±SD, n=3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>82.33±2.51</td>
<td>97.33±2.51a</td>
<td>26.00±10.00</td>
<td>93.00±1.00a</td>
</tr>
</tbody>
</table>

Similar superscripts in each row show no changes between values (α=.05).

Figure 1: A photograph shows both infected(A) and not infected(B) hemocytes. Mild apoptosis (c) were observed in hemolymph of shrimp group 1 MGG, ×100.
Figure 2: A photograph shows either extensive apoptosis (A) and not infected hemocyte (B), in hemolymph of shrimp group 3. MGG, ×100.

Figure 3: A photograph shows an active hemocyte in group vaccinated-non exposed (group 2). MGG, ×100.
Many studies carried out on the immunity system showed that shrimp have no acquired but innate immune system, which includes either cellular or humoral factors. Of course, a quasi-immune system has been detected in shrimp that shows which survivors from the last WSSV epidemic can resist the next outbreak so that survival percent reached 94% (Venegas et al., 2000; Witteveldt et al., 2004). This result implies the existence of an immune-like system in shrimp. Some of these results suggest the existence of an adaptive immune response in invertebrates, is similar to that observed in vertebrates but it seems the evidence was not sufficient to confirm the existence of an adaptive immune system in shrimp (Wu et al., 2002).

Based on the results of Table 1, semi-granular cells were lesser than that in the non-vaccinated- non-exposed group. It seems granular cells and hyalineocytes increased in percent when exposed to WSSV especially in the vaccinated groups. The most interesting finding was that granular and hyaline cells are more activated against WSSV. Other researchers (Wang et al., 2002) confirmed that WSSV was observed in nucleus and vacuoles of semi-granular cells as well as in vacuoles of granular cells. No viruses were found in hyalineocytes. It seems semi-granular cells as host cells are more susceptible to WSSV and hyalineocyte and granular cells are more active against WSSV. A mild type of apoptosis might give an opportunity to hemocytes to be willing...
to go against WSSV. Table 2 simply on higher survival percent in comparison to either none vaccinated groups. This result is accordant with other scientists (Everett and Mcfadden, 1999; Hay and Kannourakis, 2002) that showed apoptosis occurred in the early phase of infection.

It is concluded that apoptosis can be a helpful process as immune function in shrimp specially against WSSV but if it occurred in extensive situation can be harmful for shrimp and lead to huge mortality in shrimp population.

References

Afsharnasab, M., 2012. Rewiev of WSD in Iran (past, present, future) and the effect on shrimp production 17th Iranian Veterinary Congress, 28-30 April, 2012 Theran, Iran. Iran Veterinary concil Association. 12.

Kakoolaki, S., Soltani, M., Mousavi, H.A., Mirzargar, S., Sharifpour, I. and Ahmadi, M., 2011b. Study on some environmental variables (temperature and salinity) on the pathogenesity of white spot disease (WSD) in juvenile shrimp, Penaeus
vannamei. Ph.D., University of Tehran.

infection in shrimp. *Diseases of Aquatic Organisms*, 60, 253-257.

