Biometrical characters of *Artemia* from four Iranian regions

Peykaran Mana N.1*, Vahabzadeh H.2; Hafezieh, M.3; Seidgar M.4; Shoa Hasani A.5; Yazdani Sadati M. A.1

Received: January 2010 Accepted: September 2010

Abstract

In order to introduce the best strain of Iranian *Artemia* cyst to larvicultural feeding of aquatic animals, biometrical characteristics of *Artemia* cysts and newly hatched nauplii of four different geographical regions of Iran (Maharloo Lake, Fars province, Meyqan Lake, Central province Urmia Lake and Fesendooze pond West Azarbaijan province) were determined. Whole cysts and decapsulated cyst diameters, chorion thickness, dry weight and total length of newly hatched nauplii were measured under stereomicroscope equipped with Motic 2000 software MLC – 150C, attached to a monitor. The obtained data were statistically analyzed by one way ANOVA and tested with multivariate Duncan test. The results showed that *Artemia urmiana* cyst has a significantly larger diameter and nauplius total length than the other cysts (P<0.05) (285.4 ± 0.53 µm and 511.8± 1.27 µm, respectively). Although the chorion thickness of the Meyqan cyst is higher than the others there are not any significant differences between them (P>0.05). The smallest cyst diameter (276.8± 0.58 µm), nauplii total length (491.2±1.17 µm) and consequently the largest number of cysts per gram were obtained from Fesendooz. Due to the suitable size of *Artemia* samples for shrimp post larvae, ornamental and marine fish larval stage feeding it could be a good candidate for replacing imported expensive cysts.

Keywords: *Artemia*, Cyst, Decapsulated cyst, Chorion thickness
Introduction
Due to aquaculture development (especially shrimp culture and ornamental fish rearing), there is an increasing world wide demand for Artemia cyst consumption. Recently, there is an increasing demand for Artemia cyst that leads to its huge supply from the natural habitats and its culture in pools, ponds and salt water lakes. Since there are different species and strains of Artemia, biometrical studies of the existence strain can be help aquaculturists to provide economic live food for their fish culture. Artemia annual consumption of the world is more than 2000 tons and in Iran it is near to 50 tons of dry cysts (Lavens and Sorgeloos, 1996; Agh, 2004).

The populations of Artemia, exist over all temperate and tropical areas of the world covering 600 Artemia sites and have a great potential for systematic, taxonomic evolutionary, fishery studies and aquaculture (Hontoria and Amat, 1992; Lavens and Sorgeloos, 1996; Gajardo et al., 2002; Van Stappen, 2002). Hafezieh (2003) showed that there are 14 Artemia natural habitats in Iran 13 of which are parthenogenesis strains and one is Artemia bisexual in Urmia Lake. Abatzopoulos et al. (2006), illustrated 17 Artemia sites in Iran (Fig. 1); but after draining years during the previous years, these numbers decreased (Ahmady, 2002; Agh, 2004). Vanhaecke and Sorgeloos (1980) showed that the whole Artemia cyst, the decapsulated cyst and the chorion thickness diameter vary in 24 geographical regions.

Pilla and Beardmord (1994) measured the cyst diameter of A. sinica, A. urmiana and A. sp. and the results showed a significant difference among samples. Mohammad Yari (2002) measured the Artemia cyst and chorion thickness of several partenogenetic populations from Urmia lake, Qom salt lake and Injhe basin and showed that there was a significant difference of these parameters between Injhe basin and the two other populations. Asem (2005) measured the Artemia cyst, decapsulated cyst diameter and chorion thickness of A. urmiana from 26 stations of Urmia Lake and mentioned that the minimum and maximum of chorion thickness was 1.31 and 9.37, respectively.

The most harvestable Artemia cysts in Iran exist in Urmia Lake, Maharloo Lake, Arak Meyqan and Fesendooz Region. The objective of this study was to determine some biometrical characters of 4 strains of Artemia from four Iranian regions.

Materials and methods
The geographical position and other specifications of study regions have been tabulated in Table 1 and Figure 1. Water salinities were measured in all sampling areas by refractometer ATAGO-Japan (Table 1). All cysts were collected by a 100μ mesh size sampler net from Urmia Lake, Maharloo Lake, Arak Meyqan and Fesendooz Region. After collection, cysts were separated and purified from mud, algae and Artemia carcass.
Table 1: The specifications of sampling area

<table>
<thead>
<tr>
<th>Region</th>
<th>Position</th>
<th>Altitude from Sea level (m)</th>
<th>Situation</th>
<th>Area (Km²)</th>
<th>Salinity (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urmia Lake</td>
<td>37° 20’ N</td>
<td>1278</td>
<td>17 km from East of Urmia</td>
<td>5750-6000</td>
<td>320</td>
</tr>
<tr>
<td>Maharloo Lake</td>
<td>29° 32’ N</td>
<td>1455-2990</td>
<td>27 km from South-East of Shiraz</td>
<td>216</td>
<td>250</td>
</tr>
<tr>
<td>Arak</td>
<td>34° 9’ N</td>
<td>1660</td>
<td>17 km from North-East of Arak</td>
<td>545.3</td>
<td>96</td>
</tr>
<tr>
<td>Meyqan</td>
<td>49° 55’ E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fesendooz</td>
<td>37° 15’ N</td>
<td>1278</td>
<td>35 km from Miandoab</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig 1: Distribution of Artemia sites in Iran. The names on the map refer to main cities while the numbers mentioned below indicate the map of studied geographical positions of sampling areas; 1, Urmia Lake; 2, Fesendooz Region; 4, Maharloo Lake; 10, Miqan Lake (Adapted from Abatzopoulos et al, 2006)

Measurement of cyst diameters and chorion thickness

A six gram cyst sample was provided from 4 different lakes for biometrical measurements. These cysts were hydrated in 4 small conical tubes with a capacity of 500 cc for 10 minutes. 0.5 ml of logul 1% (1 g in each tube) was separately added with gentle aeration. Cyst incubation was done according to Vanhaecke et al. (1980), with filtered water using 45μ mesh size net and Dietrich & Kalle medium. 0.5 ml logul was added to each tube, after 3 hours incubation. After 12 hours incubation in
the darkness, whole cysts of each tube were collected by 100µ mesh size net. The dimensions of 1000 Non Decapsulated cysts were measured by a binocular microscope equipped with Motic 2000 loop software MLC – 150C, attached to a monitor. Mean ± SE of data were calculated. Then, some cysts were decapsulated according to Bruggman et al., (1980) using hypochlorite sodium containing 5% causative substance. Then 1000 decapsulated cysts (D) were separated and their chorion thicknesses were calculated according to the following formula:

\[
ch = \frac{(ND - D)}{2}
\]

Where:
Ch: Chorion thickness, ND: Non-Decapsulated cysts, D: Decapsulated cysts

Measurement of individual dry weight of cyst & Nauplius

To determine the dry weight of cysts, 3 replicates each containing nearly 50000 cysts in freshwater were incubated by gentle aeration for 10-15 minutes. Ten subsamples, each 250 µl, from each tube were obtained for hydration and isolation of full cysts from empty ones (30 samples). Then full cysts were dried in oven 60 °C for 24 hours and weighted with digital sensitive scale (sensitivity 0/0001 g) and individual weights of dry cysts were obtained by the following formula:

\[
\text{Individual dry weight (µg)} = \frac{(\text{dry cyst and dish weight (µg)} - \text{dish empty weight (µg)})}{\text{Number of measured cysts}}
\]

Dry weights of nauplii were measured by the same technique, but cysts were cultured in 3 trials under standard conditions. After 24 hours, 10 subsamples from each replicate were separated and the number of nauplii were counted, dried in oven (60°C and 24 hours) and weighted. Total and individual weights of samples as µg were achieved.

Measurement of Instar I nauplii length

Cysts were cultured under the standard conditions (Sorgeloos et al., 1986). Nearly 2000 nauplii were taken randomly from each tray and fixed in logul 5% solution. Lengths of 800 nauplii were measured from proximal head to the end of the abdomen by Motic software installed on a binocular microscope.

Results

Comparison of cyst diameter & chorion thickness

This study revealed that the largest cyst diameter is from Urmia Lake and the smallest one is from Fesendooz region cysts. Also, chorion thickness of cysts from Fesendooz region and Arak Meyqan are the smallest and largest ones, respectively (Table 2).
Table 2: Mean and SE of cyst diameter, decapsulated cyst diameter and chorion thickness of *Artemia* (µm) from 4 geographical regions of Iran

<table>
<thead>
<tr>
<th>Region</th>
<th>Cyst diameter (µ)</th>
<th>decapsulated cyst diameter (µ)</th>
<th>Chorion Thickness (µ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urmia Lake</td>
<td>285.4± 0.53</td>
<td>270.8± 0.54</td>
<td>7.30± 0.06</td>
</tr>
<tr>
<td>Maharloo Lake</td>
<td>281.3± 0.58</td>
<td>266.3± 0.59</td>
<td>7.50± 0.07</td>
</tr>
<tr>
<td>Arak Meyqan</td>
<td>280.1± 0.58</td>
<td>263.4± 0.56</td>
<td>8.40± 0.08</td>
</tr>
<tr>
<td>Fesendooz region</td>
<td>276.8± 0.58</td>
<td>263.5± 0.59</td>
<td>6.63± 0.06</td>
</tr>
</tbody>
</table>

A Duncan test (P< 0.05) on cyst diameter of 4 *Artemia* strains from different regions of Iran (Fig. 2) shows that the cyst diameter of samples obtained from Maharloo Lake and Arak Meyqan regions do not have any significant difference but these samples have a significant difference with Urmia Lake and Fesendooz region.

![Figure 2: Comparison of Artemia cyst diameter (Mean ± SE) from 4 different regions (P< 0.05) (1; Urmia Lake, 2; Maharloo Lake, 3; Arak Meyqan 4; Fesendooz region).](image)

Comparison of individual dry cyst weight and number of cysts per gram

Table 3 shows that *Artemia urmiana*’s cysts encompass the highest dry weight and consequently it has the least number of cysts per gram but Fesendooz region’s cysts are the smallest individual cysts and the most individual cyst per gram, also see Figure 3. The result shows that there are significant differences amongst all regions (P< 0.05).
Table 3: Mean ± SE individual dry weight of Artemia Cysts from four geographical regions of Iran

<table>
<thead>
<tr>
<th>Region</th>
<th>cysts dry weight individual (µg)</th>
<th>number of cyst per gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urmia Lake</td>
<td>3.66± 0.68</td>
<td>283000± 56000</td>
</tr>
<tr>
<td>Maharloo Lake</td>
<td>3.36± 0.45</td>
<td>303000± 43000</td>
</tr>
<tr>
<td>Arak Meyqan</td>
<td>3.52± 0.49</td>
<td>290000± 42000</td>
</tr>
<tr>
<td>Fesendooz region</td>
<td>3.22± 0.35</td>
<td>314000± 37000</td>
</tr>
</tbody>
</table>

Fig. 3: Comparison of the cyst number per gram (Mean ± SE) for 4 study areas based on Duncan test (P<0.05) (1; Urmia Lake, 2; Maharloo Lake, 3; Arak Meyqan 4; Fesendooz region).

Individual dry weight & Instar I nauplii length

The collected data indicate that the greatest individual dry weight of Artemia nauplii was found from Urmia Lake and the least one belongs to Fesendooz Artemia nauplii (Table 4). One Way ANOVA results indicate that there are significant differences in nauplious individual dry weight and length (P≤ 0.05) of 4 different regions (Table 4). The largest nauplii (511.8±1.27 µ) belonged to Artemia nauplii of Urmia Lake and the smallest one (491.3±1.17) to Fesendooz region.

Table 4: Mean ± SE individual dry weight and length of Artemia nauplii from 4 different regions

<table>
<thead>
<tr>
<th>Regions</th>
<th>Instar I Nauplii individual dry weight (µg)</th>
<th>length of Instar I Nauplii length of Artemia (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urmia Lake</td>
<td>3.75 ± 0.03</td>
<td>511.7 ± 1.27</td>
</tr>
<tr>
<td>Maharloo Lake</td>
<td>3.04 ± 0.03</td>
<td>509.4 ± 1.25</td>
</tr>
<tr>
<td>Arak Meyqan</td>
<td>3.57 ± 0.04</td>
<td>504.9 ± 1.28</td>
</tr>
<tr>
<td>Fesendooz region</td>
<td>3.74 ± 0.03</td>
<td>491.3 ± 1.17</td>
</tr>
</tbody>
</table>
Discussion

Although *Artemia* cyst structure is the same in all strains but they have quantitative differences that have a great impact on their use in aquaculture. Vanhaecke & Sorgeloos (1980) studied the whole cyst, decapsulated cyst and chorion thickness diameter varies in 24 geographical regions. The results showed significant differences of mentioned parameters in various populations. Also, they suggested that the cyst diameter was related to genetic characteristics.

They concluded that the largest cyst diameter was due to parthenogenesis population of Margarita Di Savia Italy (284.9±14.6 µ) whereas *Artemia franciscana* from Sanferansisco Bay had the smallest cyst diameter (223.9±11.7 µ). The largest and smallest decapsulated cyst diameters were recorded from *Artemia sp.* from Toticorin - India (262.7±11.5µ) and *A. franciscana* from Sanfrancisco Bay (207.7±11.1 µ), respectively (Vanhaecke & Sorgeloos 1980). Pilla and Beardmore (1994) reported that the whole cyst diameter for *A. sinica, A. urmiana* and *Artemia sp.* was 232.75±11.22 µ, 265.85±15.85µ and 232.75±11.22 µ, respectively; which shows a significant difference among specimens.

Mayer (2002) showed that *Artemia sp.* populations from Portorico & Dominican have a significant difference on whole cyst diameters. Asem et al., (2007) did a survey in Urmia Lake and carried out sampling from 26 stations and consequently found out that cyst & decapsulated cyst diameters and chorion thickness of collected cysts were different; namely the largest cyst diameter was (259.34±11.36µ) in N (3-1) inhabitant (Asem et al. 2007, Peikaran Mana, 2007). In this study, the Mean ± SE of *Artemia* cyst & decapsulated cyst diameters and chorion thickness parameters were measured from 4 different geographical regions of Iran including: Urmia, Maharloo, Arak and Fesendooz. The results indicate a high variation of 280.1 ± 0.58-285.4 ± 0.53, 263.4 ± 0.56-270.8 ± 0.54 and 6.63 ± 0.06- 8.4 ± 0.08 µ, respectively. *Artemia* cysts’ diameters of Urmia Lake (265.85 ± 15.85µ) have been reported by Pilla and Beardmore (1994) and Asem et al., (2007), is different from obtained results. The reason may be due to salinity changes, food availability, environmental changes especially nutritional and other physico-chemical factors, precision of measuring instruments, Triantaphyllidis et al. (1996) showed that the diameters of untreated cysts from Namibia and Madagascar were 247.7 ±11 µ and 285.9± 11.6 µ; also for decapsulated cysts were 233.1±9.8 µ and 246.2 ±11.7 µ, respectively. Their study indicated that the cysts from Namibia were smaller than Madagascar ones. Abatzopoulos et al. (1998) reported that *A.tibetiana* is the biggest recorded in size for *Artemia* species (323± 11.2 µ and 230±14.6 µ). Cohen et al. (1999) found diameter ranges between 246.1± 21 µ and 230.3 ± 1 µ for *Artemia* populations from Argentina.

Comparing the results of this survey with other researches on other species of *Artemia*, it can be concluded that in spite of the existing variety in *Artemia* cyst diameter in 4 geographical regions of Iran, their size are in the range
of other species or strains of Artemia cysts or a little larger. The world average of nauplii dry weights have been reported as: 1.63-3.09µg, whereas, dry weight of nauplii studied in the 4 Iranian regions were in the range of 3.04 – 3.75µg, that shows a little difference, therefore they have more advantages comparing other nauplii achievement from other parts of the world. It is concluded that cysts of Fesendooz region have smaller sizes and greater cyst numbers per gram than the others. On the other hand, nauplii from cysts of Fesendooz, regarding to their small and suitable size may have a great potential for use in larviculture of various aquatic animals especially for shrimp, and have a great potential to compete with cysts from other parts of the world, especially after processing, drying and packaging.

Acknowledgments
Special thanks to Dr. Motallebi for his funding support and the authors sincerely acknowledge Dr. Agh and Mr. Siavosh Ganji for their kind cooperation and scientific advice in different steps of the study.

References

Peikaran Mana, N., 2007. Quantitative and Qualitative assessment of Artemia Cysts, Decapsulated cysts and Nauplii from 3 Geographical regions of Iran, MSc thesis, Lahijan Islamic Azad University, advised by Dr. H. vahabzadeh pp.144.

Triantaphyllidis, G. V., Abatzopoulos, T. J., Miasa, E. and Sorgeloos, P., 1996. International study on Artemia population from Namibia and Madagascar; cytogenetics, biometry,
hatching characteristics and fatty acid profiles. *Hydrobiologia*, 335, 97-106.
